The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal me...This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal.展开更多
Perfluoroalkyl acids of different chain lengths,including trifluoroacetic acid,heptafluorobutyric acid,and nonafluoropentanoic acid,were used as second ligands to replace the formic acid on the Zr_(6)clusters in MOF-8...Perfluoroalkyl acids of different chain lengths,including trifluoroacetic acid,heptafluorobutyric acid,and nonafluoropentanoic acid,were used as second ligands to replace the formic acid on the Zr_(6)clusters in MOF-808.This led to the formation of a series of MOF-808-R materials(R=F_(3),F_(7),F_(9),corresponding to trifluoroacetic acid,hep-tafluorobutyric acid,and nonafluoropentanoic acid)with multiple ligands,and we investigated the impact of the sec-ond ligand modification on pore size and pore environment.The loading amount of the second ligand was deter-mined using NMR and other methods.We conducted adsorption tests for acetylene and carbon dioxide at different temperatures on both MOF-808 and MOF-808-R to explore the effects of the ligand diversification on acetylene sep-aration performance.It was found that MOF-808-F_(7)exhibited the best performance in acetylene-carbon dioxide sep-aration.展开更多
To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MO...To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MOF):(NH_(2)Me_(2))_(2)[Fe_(3)(μ_(3)-O)(bdc)_(3)][In(FA)_(3)Cl_(3)](Fe‑FAIn‑bdc)was synthesized successfully by using the metal-formate com-plex[In(FA)_(3)Cl_(3)]^(3-)as the pore partition units,where bdc^(2-)=terephthalate,FA-=formate.Owing to the pore partition effect of this metal-organic building block,fruitful confined spaces are formed in the network of Fe‑FAIn‑bdc,endowing this MOF with superior separation performance of acetylene and carbon dioxide.According to the adsorp-tion test,this MOF exhibited a high adsorption capacity for C_(2)H_(2)(50.79 cm^(3)·g^(-1))at 298 K and 100 kPa,which was much higher than that for CO_(2)(29.99 cm^(3)·g^(-1))and C_(2)H_(4)(30.94 cm^(3)·g^(-1))under the same conditions.Ideal adsorbed solution theory(IAST)calculations demonstrate that the adsorption selectivity of Fe‑FAIn‑bdc for the mixture of C_(2)H_(2)/CO_(2)and C_(2)H_(2)/C_(2)H_(4)in a volume ratio of 50∶50 was 3.08 and 3.65,respectively,which was higher than some reported MOFs such as NUM-11 and SNNU-18.CCDC:_(2)453954.展开更多
Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surfac...Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.展开更多
Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitu...Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitute to facilitate the cleaner production of low-grade molybdenum bismuth ore in this study.The effects of calcium hypochlorite on molybdenite,bismuthinite,and pyrite were investigated through micro-flotation,flotation kinetics,batch flotation,Fourier transform infrared(FTIR)spectra,scanning electron microscopy energy dispersion spectra(SEM-EDS),and inductively coupled plasma-optical emission spectra(ICP-OES).The flotation tests results showed that calcium hypochlorite could selectively depress bismuthinite and pyrite.In comparison to sodium sulfide,calcium hypochlorite not only improved the flotation indicators for molybdenum and bismuth concentrates but also reduced the dosage of flotation reagents.Moreover,the chemical oxygen demand(COD)of tailings wastewater significantly decreased when using calcium hypochlorite as a depressant.Mechanism research revealed that the use of calcium hypochlorite as a depressant led to BiOCl precipitation on bismuthinite,which hindered the attachment of the collector.In summary,calcium hypochlorite serves as a more efficient and environmentally friendly depressant compared to sodium sulfide in the industrial production processes of low-grade molybdenum bismuth ore.展开更多
Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl func...Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.展开更多
Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter...Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter physics,materials science,and mineral separation technologies,these materials are now poised for new opportunities in theoretical research and development.This review provides a comprehensive analysis of these matrices,encompassing their structure,size,shape,composition,properties,and multifaceted applications.These materials,primarily composed of alloys of transition state metasl such as iron(Fe),cobalt(Co),titanium(Ti),and nickel(Ni),exhibit unique attributes like high magnetization rates,low eleastic modulus,and high saturation magnetic field strengths.Furthermore,the studies also delve into the complex mechanical interactions involved in the separation of magnetic particles using magnetic separator matrices,including magnetic,gravitational,centrifugal,and van der Waals forces.The review outlines how size and shape effects influence the magnetic behavior of matrices,offering new perspectives for innovative applications of magnetic matrices in various domains of materials science and magnetic separation.展开更多
Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind sourc...Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is...Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.展开更多
The application of photocatalytic technology in H_(2) production,CO_(2) reduction,H_(2)O_(2) production,and pollutant degradation provides a promising approach to the alleviation of energy shortage and environmental i...The application of photocatalytic technology in H_(2) production,CO_(2) reduction,H_(2)O_(2) production,and pollutant degradation provides a promising approach to the alleviation of energy shortage and environmental issues 1-3.However,hindered by the easy recombination of electron-hole pairs,single-component photocatalysts usually exhibit inferior performance.Constructing heterojunction photocatalysts is a valid method which can improve charge separation and attain high catalytic efficiencies4.展开更多
There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An importa...There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.展开更多
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(...The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.展开更多
The photoconversion efficiency of semiconductor photocatalysts is severely hindered by uncontrolled recombination of photogenerated charge carriers 1-5.Investigating charge transfer dynamics and achieving manipulative...The photoconversion efficiency of semiconductor photocatalysts is severely hindered by uncontrolled recombination of photogenerated charge carriers 1-5.Investigating charge transfer dynamics and achieving manipulative carrier separation is of great interest.展开更多
Cancer metastasis is the leading cause of death in cancer patients worldwide and one of the major challenges in treating cancer.Circulating tumor cells(CTCs)play a pivotal role in cancer metastasis.However,the content...Cancer metastasis is the leading cause of death in cancer patients worldwide and one of the major challenges in treating cancer.Circulating tumor cells(CTCs)play a pivotal role in cancer metastasis.However,the content of CTCs in peripheral blood is minimal,so the detection of CTCs in real samples is extremely challenging.Therefore,efficient enrichment and early detection of CTCs are essential to achieve timely diagnosis of diseases.In this work,we constructed an innovative and sensitive single-nanoparticle collision electrochemistry(SNCE)biosensor for the detection of MCF-7 cells(human breast cancer cells)by immunomagnetic separation technique and liposome signal amplification strategy.Liposomes embedded with platinum nanoparticles(Pt NPs)were used as signal probes,and homemade gold ultramicroelectrodes(Au UME)were used as the working electrodes.The effective collision between Pt NPs and UME would produce distinguishable step-type current.MCF-7 cells were accurately quantified according to the relationship between cell concentration and collision frequency(the number of step-type currents generated per unit time),realizing highly sensitive and specific detection of MCF-7 cells.The SNCE biosensor has a linear range of 10 cells·mL^(-1)to 10^(5) cells·mL^(-1)with a detection limit as low as 5 cells·mL^(-1).In addition,the successful detection of MCF-7 cells in complex samples showed that the SNCE biosensors have great potential for patient sample detection.展开更多
Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently.The development and utilization of renewable,sustainable,and clean energy sources,...Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently.The development and utilization of renewable,sustainable,and clean energy sources,such as wind and solar,are crucial.However,the instability of these intermittent energy sources makes the need for energy storage systems increasingly urgent.Aqueous zinc-ion batteries(AZIBs)have received widespread attention due to their unique advantages,such as high energy density,cost-effectiveness,environmental friendliness,and safety.However,AZIBs face significant challenges,mainly the formation of zinc dendrites that seriously affect the stability and lifetime of the batteries,leading to battery failure.Therefore,reducing the formation of zinc dendrites is crucial for improving the performance of AZIBs.This review systematically and comprehensively comprehends the current strategies and advances in inhibiting the formation of zinc dendrites.By comprehensively analyzing the latest developments in zinc anode,electrolyte,separator design and modification,as well as other novel mechanisms,it provides researchers with a thorough understanding to guide future research and advance the development of AZIBs.展开更多
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
基金The project was supported by Natural Science Foundation of Shandong Province(ZR2021MB104)National Natural Science Foundation of China(22078174).
文摘This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal.
文摘Perfluoroalkyl acids of different chain lengths,including trifluoroacetic acid,heptafluorobutyric acid,and nonafluoropentanoic acid,were used as second ligands to replace the formic acid on the Zr_(6)clusters in MOF-808.This led to the formation of a series of MOF-808-R materials(R=F_(3),F_(7),F_(9),corresponding to trifluoroacetic acid,hep-tafluorobutyric acid,and nonafluoropentanoic acid)with multiple ligands,and we investigated the impact of the sec-ond ligand modification on pore size and pore environment.The loading amount of the second ligand was deter-mined using NMR and other methods.We conducted adsorption tests for acetylene and carbon dioxide at different temperatures on both MOF-808 and MOF-808-R to explore the effects of the ligand diversification on acetylene sep-aration performance.It was found that MOF-808-F_(7)exhibited the best performance in acetylene-carbon dioxide sep-aration.
文摘To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MOF):(NH_(2)Me_(2))_(2)[Fe_(3)(μ_(3)-O)(bdc)_(3)][In(FA)_(3)Cl_(3)](Fe‑FAIn‑bdc)was synthesized successfully by using the metal-formate com-plex[In(FA)_(3)Cl_(3)]^(3-)as the pore partition units,where bdc^(2-)=terephthalate,FA-=formate.Owing to the pore partition effect of this metal-organic building block,fruitful confined spaces are formed in the network of Fe‑FAIn‑bdc,endowing this MOF with superior separation performance of acetylene and carbon dioxide.According to the adsorp-tion test,this MOF exhibited a high adsorption capacity for C_(2)H_(2)(50.79 cm^(3)·g^(-1))at 298 K and 100 kPa,which was much higher than that for CO_(2)(29.99 cm^(3)·g^(-1))and C_(2)H_(4)(30.94 cm^(3)·g^(-1))under the same conditions.Ideal adsorbed solution theory(IAST)calculations demonstrate that the adsorption selectivity of Fe‑FAIn‑bdc for the mixture of C_(2)H_(2)/CO_(2)and C_(2)H_(2)/C_(2)H_(4)in a volume ratio of 50∶50 was 3.08 and 3.65,respectively,which was higher than some reported MOFs such as NUM-11 and SNNU-18.CCDC:_(2)453954.
基金Project(BGRIMM-KJSKL-2024-07) supported by the Open Foundation of State Key Laboratory of Mineral Processing,ChinaProjects(52374259,52174239) supported by the National Natural Science Foundation of China。
文摘Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.
基金Projects(2022YFC2904504-4,2019YFC0408300)supported by the National Key R&D Program of ChinaProject(HB202302)supported by the Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control,China+1 种基金Project(51634009)supported by the National Natural Science Foundation of ChinaProject(B14034)supported by the National“111”Project,China。
文摘Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitute to facilitate the cleaner production of low-grade molybdenum bismuth ore in this study.The effects of calcium hypochlorite on molybdenite,bismuthinite,and pyrite were investigated through micro-flotation,flotation kinetics,batch flotation,Fourier transform infrared(FTIR)spectra,scanning electron microscopy energy dispersion spectra(SEM-EDS),and inductively coupled plasma-optical emission spectra(ICP-OES).The flotation tests results showed that calcium hypochlorite could selectively depress bismuthinite and pyrite.In comparison to sodium sulfide,calcium hypochlorite not only improved the flotation indicators for molybdenum and bismuth concentrates but also reduced the dosage of flotation reagents.Moreover,the chemical oxygen demand(COD)of tailings wastewater significantly decreased when using calcium hypochlorite as a depressant.Mechanism research revealed that the use of calcium hypochlorite as a depressant led to BiOCl precipitation on bismuthinite,which hindered the attachment of the collector.In summary,calcium hypochlorite serves as a more efficient and environmentally friendly depressant compared to sodium sulfide in the industrial production processes of low-grade molybdenum bismuth ore.
基金Project(2025JJ70532)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(21862009,21563016)supported by the National Natural Science Foundation of ChinaProject(2022GX020)supported by the Taian Science and Technology Innovation Development Project,China。
文摘Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.
基金Project(52174245)supported by the National Natural Science Foundation of ChinaProject(2021J01640)supported by the Natural Science Foundation of Fujian Province,ChinaProject(BGRIMM-KJSKL2022-03)supported by Open Foundation of the State Key Laboratory of Mineral Processing,China。
文摘Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter physics,materials science,and mineral separation technologies,these materials are now poised for new opportunities in theoretical research and development.This review provides a comprehensive analysis of these matrices,encompassing their structure,size,shape,composition,properties,and multifaceted applications.These materials,primarily composed of alloys of transition state metasl such as iron(Fe),cobalt(Co),titanium(Ti),and nickel(Ni),exhibit unique attributes like high magnetization rates,low eleastic modulus,and high saturation magnetic field strengths.Furthermore,the studies also delve into the complex mechanical interactions involved in the separation of magnetic particles using magnetic separator matrices,including magnetic,gravitational,centrifugal,and van der Waals forces.The review outlines how size and shape effects influence the magnetic behavior of matrices,offering new perspectives for innovative applications of magnetic matrices in various domains of materials science and magnetic separation.
基金supported by the National Natural Science Foundation of China(6237104662201048)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0260).
文摘Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.
基金support from National Natural Science Foundation of China(Grant Nos.22275145,22305189and 21875184)Natural Science Foundation of Shaanxi Province(Grant Nos.2022JC-10 and 2024JC-YBQN-0112).
文摘Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.
文摘The application of photocatalytic technology in H_(2) production,CO_(2) reduction,H_(2)O_(2) production,and pollutant degradation provides a promising approach to the alleviation of energy shortage and environmental issues 1-3.However,hindered by the easy recombination of electron-hole pairs,single-component photocatalysts usually exhibit inferior performance.Constructing heterojunction photocatalysts is a valid method which can improve charge separation and attain high catalytic efficiencies4.
基金2023 undergraduate Innovation and Entrepreneurship Project of Yichun University(S202310417015)。
文摘There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.
基金Projects(52001083,52171111,U2141207)supported by the National Natural Science Foundation of ChinaProject(LH2020E060)supported by the Natural Science Foundation of Heilongjiang,China。
文摘The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.
文摘The photoconversion efficiency of semiconductor photocatalysts is severely hindered by uncontrolled recombination of photogenerated charge carriers 1-5.Investigating charge transfer dynamics and achieving manipulative carrier separation is of great interest.
基金supported by the National Natural Science Foundation of China(Nos.22274037,22376055 and 21904032)the Natural Science Foundation of Hubei Province(2022CFB383)。
文摘Cancer metastasis is the leading cause of death in cancer patients worldwide and one of the major challenges in treating cancer.Circulating tumor cells(CTCs)play a pivotal role in cancer metastasis.However,the content of CTCs in peripheral blood is minimal,so the detection of CTCs in real samples is extremely challenging.Therefore,efficient enrichment and early detection of CTCs are essential to achieve timely diagnosis of diseases.In this work,we constructed an innovative and sensitive single-nanoparticle collision electrochemistry(SNCE)biosensor for the detection of MCF-7 cells(human breast cancer cells)by immunomagnetic separation technique and liposome signal amplification strategy.Liposomes embedded with platinum nanoparticles(Pt NPs)were used as signal probes,and homemade gold ultramicroelectrodes(Au UME)were used as the working electrodes.The effective collision between Pt NPs and UME would produce distinguishable step-type current.MCF-7 cells were accurately quantified according to the relationship between cell concentration and collision frequency(the number of step-type currents generated per unit time),realizing highly sensitive and specific detection of MCF-7 cells.The SNCE biosensor has a linear range of 10 cells·mL^(-1)to 10^(5) cells·mL^(-1)with a detection limit as low as 5 cells·mL^(-1).In addition,the successful detection of MCF-7 cells in complex samples showed that the SNCE biosensors have great potential for patient sample detection.
文摘Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently.The development and utilization of renewable,sustainable,and clean energy sources,such as wind and solar,are crucial.However,the instability of these intermittent energy sources makes the need for energy storage systems increasingly urgent.Aqueous zinc-ion batteries(AZIBs)have received widespread attention due to their unique advantages,such as high energy density,cost-effectiveness,environmental friendliness,and safety.However,AZIBs face significant challenges,mainly the formation of zinc dendrites that seriously affect the stability and lifetime of the batteries,leading to battery failure.Therefore,reducing the formation of zinc dendrites is crucial for improving the performance of AZIBs.This review systematically and comprehensively comprehends the current strategies and advances in inhibiting the formation of zinc dendrites.By comprehensively analyzing the latest developments in zinc anode,electrolyte,separator design and modification,as well as other novel mechanisms,it provides researchers with a thorough understanding to guide future research and advance the development of AZIBs.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.