Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of...Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of rice sheath blight pathogen to the biological pesticide by treating 45 strains isolated from three northeastern provinces with varying concentrations of Shenqinmycin.The effects on mycelial growth and sclerotial germination of the rice sheath blight pathogens were measured to determine the resistance levels.The results indicated that all tested strains were sensitive to Shenqinmycin,with EC50 values for Rhizoctonia solani ranging from 0.0487 mg·L^(-1) to 0.2348 mg·L^(-1),and a sensitivity baseline of 0.1292 mg·L^(-1).For Rhizoctonias oryzae-sativae,the EC50 values ranged from 0.0517 mg·L^(-1) to 0.1697 mg·L^(-1),with a sensitivity baseline of 0.1163 mg·L^(-1).Shenqinmycin had no effect on the sclerotial germination of either pathogen,suggesting its potential as an effective agent for controlling rice sheath blight.展开更多
The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity desig...The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency.展开更多
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti...The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.展开更多
In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal agin...In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
Mendelian randomization(MR)is widely used in causal mediation analysis to control unmeasured confounding effects,which is valid under some strong assumptions.It is thus of great interest to assess the impact of violat...Mendelian randomization(MR)is widely used in causal mediation analysis to control unmeasured confounding effects,which is valid under some strong assumptions.It is thus of great interest to assess the impact of violations of these MR assumptions through sensitivity analysis.Sensitivity analyses have been conducted for simple MR-based causal average effect analyses,but they are not available for MR-based mediation analysis studies,and we aim to fill this gap in this paper.We propose to use two sensitivity parameters to quantify the effect due to the deviation of the IV assumptions.With these two sensitivity parameters,we derive consistent indirect causal effect estimators and establish their asymptotic propersties.Our theoretical results can be used in MR-based mediation analysis to study the impact of violations of MR as-sumptions.The finite sample performance of the proposed method is illustrated through simulation studies,sensitivity ana-lysis,and application to a real genome-wide association study.展开更多
Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instru...Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters.展开更多
Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapo...Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapon system. In this work, impact sensitivity test is used to study the effects of wax coating of HMX, AP and aluminum(Al) powder on sensitivity properties of HMX/AP/Al mixtures.Thermogravimetry-differential scanning calorimetry(TG-DSC) analysis has been developed to investigate the mechanism of interaction between HMX and AP during the course of thermal decomposition of HMX/AP/AI mixtures. The results show that severe interaction effect exists between AP and HMX, which causes the impact sensitivity(H_(50)) to become smaller. The impact energy(E_(50)) of mixture can be improved under the circumstances of effective separating HMX from AP by surface coating with Wax. AP may firstly engender low-temperature decomposition under the circumstance of external heat or mechanical impact, which causes the exothermic peak of HMX forward shift about 28 C. The gaseous product releasing from thermal decomposition of HMX accelerates further decomposition of AP. For HMX/AP composite system, the interactive catalysis effect between AP and HMX can be eliminated mostly by adding a great deal of Al powder(i.e. above 30%).展开更多
The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity.This article demonstrates application of spray evaporation to prepare reduced ...The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity.This article demonstrates application of spray evaporation to prepare reduced sensitive co-crystals of high performance nitramine explosives like HMX and CL-20 with a relatively less insensitive explosive 1,1-diamino-2,2-dinitroethylene or FOX-7.Stronger intermolecurar hydrogen bonding in FOX-7 is responsible for limited solubility in nost of o rganic solvents.Large solubility differences of FOX-7 with HMX and CL-20 restricts ifs co-crystallization through classical methods that yields thermodynamically favorable product.Spray flash evaporation,a kinetic crystallization method,has been therefore adopted and could successfully produce CL-20/FOX-7(2:1) and HMX/FQX-7(4:1) co-crystals.The fine powdered materials obtained were characterized by SEM,powder XRD,Raman spectro scopy,DSC-TGA etc.Multipoint Raman spectra showed consistent occurrence of spectral features indicating stoichiometric co-existence of ingredients in the crystal lattices.DSC analysis showed absence of all thermally assisted solidsolid phase transformation in the co-crystals as they were observed in pristine materials.The thermal stability calculated in terms of activation barrier fordecomposition,revealed the CL-20/FOX-7 co-crystal to be interlediately stable on comparison to their constituents while,the HMX/FOX-7 co-crystal is more stable.Compared to pure HMX and CL-20,both the co-crystals have shown higher insensitivity to impact force,suggesting them to be suitable for future generation insensitive munitions.展开更多
The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteri...The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteristics and micro-structure of CPB. CPB specimens with different mass concentrations prepared from the full tailings of Xianglushan Tungsten Ore were micro-tests. Moreover, acquired pore digital images were processed by using the pores(particles) and cracks analysis system(PCAS), and a sensitivity analysis was performed. The results show that as the mass concentration of CPB increases from 70% to 78%, the porosity, the average pore area and the number of pores drop overall, leading to a decline in the pores opening degree and enhancing the mechanical characteristics. As the mass concentration of CPB increases, the trend of fractal dimension, probability entropy and roundness is reduced, constant and increased, which can result in an enhancement of the uniformity, an unchanged directionality and more round pores. According to the definition of sensitivity, the sensitivities of various micro-parameters were calculated and can be ranked as porosity > average pore area > number of pores > roundness > fractal dimension > probability entropy.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The e...High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.展开更多
Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is stron...Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.展开更多
With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental qua...With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.展开更多
A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simu...A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simulation models for high-speed piston impacts on explosive supercells were established.Simulations were also performed to investigate shock-induced reactions of various high-energy explosives.The fraction of reacted explosive molecules in an initial supercell changed linearly with the propagation distance of the shock-wave front.The corresponding slope could be used as a reaction rate for a specific shock-loading velocity.Reaction rates that varied with the shock-loading pressure exhibited two-stage linearities with different slopes.The two inflection points corresponded to the initial and accelerated reactions,which respectively correlated to the thresholds of shock-induced ignition and detonation.Therefore,the ignition and detonation critical pressures could be determined.The sensitivity could then be a quantitative prediction of the critical pressure.The accuracies of the quantitative shock sensitivity predictions were verified by comparing the impact and shock sensitivities of common explosives and the characteristics of anisotropic shock-induced reactions.Molecular dynamics simulations quantitatively predict and rank shock sensitivities by using only crystal structures of the explosives.Overall,this method will enable the design and safe use of explosives.展开更多
Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained...Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For comparison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.展开更多
To reduce the risk of mission failure caused by the MM/OD impact of the spacecraft,it is necessary to optimize the design of the spacecraft.Spacecraft survivability assessment is the key technology in the optimal desi...To reduce the risk of mission failure caused by the MM/OD impact of the spacecraft,it is necessary to optimize the design of the spacecraft.Spacecraft survivability assessment is the key technology in the optimal design of spacecraft.Spacecraft survivability assessment includes spacecraft impact sensitivity analysis and spacecraft component vulnerability analysis under MM/OD environment.The impact sensitivity refers to the probability of a spacecraft encountering an MM/OD impact while in orbit.Vulnerability refers to the probability that each component of a spacecraft may fail or malfunction when impacted by space debris.Yet this paper mainly analyzes the impact sensitivity and proposes a spacecraft sensitivity assessment method under the MM/OD environment based on a panel method.Under this panel method,a spacecraft geometric model is discretized into small panels,and whether they are impacted by MM/OD or not is determined through the analysis of the shielding or shadowing relationships between panels.The number of impacts on each panel is obtained through calculation,and accordingly the probability of each spacecraft component encountering MM/OD impact can be acquired,thus generating the impact sensibility.This paper extracts data from the NASA’s ORDEM2000,the ESA’s MASTER8 as well as the SDEEM2015(Space Debris Environmental Engineering Model developed by HIT),and uses the PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)method to interpolate and fit the size-flux relationship of space debris.Compared with linear interpolation and cubic spline interpolation,the fitting results through the method are relatively more accurate.The feasibility of this method is also demonstrated through two actual examples shown in this paper,whose results are close to those from ESABASE,although there are some minor errors mainly due to different debris data input.Through the cross-check by three risk assessment software-BUMPER,MDPANTO and MODAOST-under standard operating conditions,the feasibility of this method is again verified.展开更多
基金Supported by the Green Plant Protection Project(213010801)the Heilongjiang Provincial Key R&D Program Projects(20232X02B0502)。
文摘Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of rice sheath blight pathogen to the biological pesticide by treating 45 strains isolated from three northeastern provinces with varying concentrations of Shenqinmycin.The effects on mycelial growth and sclerotial germination of the rice sheath blight pathogens were measured to determine the resistance levels.The results indicated that all tested strains were sensitive to Shenqinmycin,with EC50 values for Rhizoctonia solani ranging from 0.0487 mg·L^(-1) to 0.2348 mg·L^(-1),and a sensitivity baseline of 0.1292 mg·L^(-1).For Rhizoctonias oryzae-sativae,the EC50 values ranged from 0.0517 mg·L^(-1) to 0.1697 mg·L^(-1),with a sensitivity baseline of 0.1163 mg·L^(-1).Shenqinmycin had no effect on the sclerotial germination of either pathogen,suggesting its potential as an effective agent for controlling rice sheath blight.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB3002800).
文摘The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency.
基金Project(52205421)supported by the National Natural Science Foundation of ChinaProject(AA23023028)supported by the Guangxi Science and Technology Major Project,China+2 种基金Projects(2022B0909070001,2020B010186001)supported by the Key Research and Development Projects of Guangdong Province,ChinaProject(2021B0101220006)supported by the Guangdong Key Areas Research and Development Program“Chip,Software and Computing”Major Project,ChinaProjects(2021RC2087,2022JJ30570)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.
基金supported by the National Key Laboratory of Energetic Materials, China (Grant No. 2023-LB-036-09).
文摘In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
基金This work was supported by the National Natural Science Foundation of China(12171451,72091212).
文摘Mendelian randomization(MR)is widely used in causal mediation analysis to control unmeasured confounding effects,which is valid under some strong assumptions.It is thus of great interest to assess the impact of violations of these MR assumptions through sensitivity analysis.Sensitivity analyses have been conducted for simple MR-based causal average effect analyses,but they are not available for MR-based mediation analysis studies,and we aim to fill this gap in this paper.We propose to use two sensitivity parameters to quantify the effect due to the deviation of the IV assumptions.With these two sensitivity parameters,we derive consistent indirect causal effect estimators and establish their asymptotic propersties.Our theoretical results can be used in MR-based mediation analysis to study the impact of violations of MR as-sumptions.The finite sample performance of the proposed method is illustrated through simulation studies,sensitivity ana-lysis,and application to a real genome-wide association study.
文摘Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters.
基金supported by the National Nature Science Foundation of China(Nos.11402238,11502243 and 11502245)
文摘Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapon system. In this work, impact sensitivity test is used to study the effects of wax coating of HMX, AP and aluminum(Al) powder on sensitivity properties of HMX/AP/Al mixtures.Thermogravimetry-differential scanning calorimetry(TG-DSC) analysis has been developed to investigate the mechanism of interaction between HMX and AP during the course of thermal decomposition of HMX/AP/AI mixtures. The results show that severe interaction effect exists between AP and HMX, which causes the impact sensitivity(H_(50)) to become smaller. The impact energy(E_(50)) of mixture can be improved under the circumstances of effective separating HMX from AP by surface coating with Wax. AP may firstly engender low-temperature decomposition under the circumstance of external heat or mechanical impact, which causes the exothermic peak of HMX forward shift about 28 C. The gaseous product releasing from thermal decomposition of HMX accelerates further decomposition of AP. For HMX/AP composite system, the interactive catalysis effect between AP and HMX can be eliminated mostly by adding a great deal of Al powder(i.e. above 30%).
基金Defense Research&Development Organization(DRDO),India for financial support towards this study。
文摘The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity.This article demonstrates application of spray evaporation to prepare reduced sensitive co-crystals of high performance nitramine explosives like HMX and CL-20 with a relatively less insensitive explosive 1,1-diamino-2,2-dinitroethylene or FOX-7.Stronger intermolecurar hydrogen bonding in FOX-7 is responsible for limited solubility in nost of o rganic solvents.Large solubility differences of FOX-7 with HMX and CL-20 restricts ifs co-crystallization through classical methods that yields thermodynamically favorable product.Spray flash evaporation,a kinetic crystallization method,has been therefore adopted and could successfully produce CL-20/FOX-7(2:1) and HMX/FQX-7(4:1) co-crystals.The fine powdered materials obtained were characterized by SEM,powder XRD,Raman spectro scopy,DSC-TGA etc.Multipoint Raman spectra showed consistent occurrence of spectral features indicating stoichiometric co-existence of ingredients in the crystal lattices.DSC analysis showed absence of all thermally assisted solidsolid phase transformation in the co-crystals as they were observed in pristine materials.The thermal stability calculated in terms of activation barrier fordecomposition,revealed the CL-20/FOX-7 co-crystal to be interlediately stable on comparison to their constituents while,the HMX/FOX-7 co-crystal is more stable.Compared to pure HMX and CL-20,both the co-crystals have shown higher insensitivity to impact force,suggesting them to be suitable for future generation insensitive munitions.
基金Projects(51674188,51874229,51504182)supported by the National Natural Science Foundation of ChinaProject(2018KJXX-083)supported by Shaanxi Innovative Talents Cultivate Program-New-star Plan of Science and Technology,China
文摘The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteristics and micro-structure of CPB. CPB specimens with different mass concentrations prepared from the full tailings of Xianglushan Tungsten Ore were micro-tests. Moreover, acquired pore digital images were processed by using the pores(particles) and cracks analysis system(PCAS), and a sensitivity analysis was performed. The results show that as the mass concentration of CPB increases from 70% to 78%, the porosity, the average pore area and the number of pores drop overall, leading to a decline in the pores opening degree and enhancing the mechanical characteristics. As the mass concentration of CPB increases, the trend of fractal dimension, probability entropy and roundness is reduced, constant and increased, which can result in an enhancement of the uniformity, an unchanged directionality and more round pores. According to the definition of sensitivity, the sensitivities of various micro-parameters were calculated and can be ranked as porosity > average pore area > number of pores > roundness > fractal dimension > probability entropy.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
基金Projects(51135003,U1234208)supported by the National Natural Science Foundation of ChinaProject(IRT0816)supported by Program for Changjiang Scholars and Innovative Research Team in University of ChinaProject(N110603001)supported by the Fundamental Research Funds for the Central Universities of China
文摘High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.
文摘Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.
基金Shanghai Leading Academic Discipline Project (T0502)Shanghai Municipal Educational Commission Project (05EZ32).
文摘With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.
基金supported by the National Natural Science Foundation of China(Grant No.11832006).
文摘A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simulation models for high-speed piston impacts on explosive supercells were established.Simulations were also performed to investigate shock-induced reactions of various high-energy explosives.The fraction of reacted explosive molecules in an initial supercell changed linearly with the propagation distance of the shock-wave front.The corresponding slope could be used as a reaction rate for a specific shock-loading velocity.Reaction rates that varied with the shock-loading pressure exhibited two-stage linearities with different slopes.The two inflection points corresponded to the initial and accelerated reactions,which respectively correlated to the thresholds of shock-induced ignition and detonation.Therefore,the ignition and detonation critical pressures could be determined.The sensitivity could then be a quantitative prediction of the critical pressure.The accuracies of the quantitative shock sensitivity predictions were verified by comparing the impact and shock sensitivities of common explosives and the characteristics of anisotropic shock-induced reactions.Molecular dynamics simulations quantitatively predict and rank shock sensitivities by using only crystal structures of the explosives.Overall,this method will enable the design and safe use of explosives.
基金The project was supported by Equipment Pre-research Key Laboratory Fund(No.6142020305)The authors would like to thank Shiyanjia Lab(www.shiyanjia.com)for the support of XPS test.
文摘Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For comparison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.
基金supported by the National Natural Science Foundation of China(Grant No.11772113)。
文摘To reduce the risk of mission failure caused by the MM/OD impact of the spacecraft,it is necessary to optimize the design of the spacecraft.Spacecraft survivability assessment is the key technology in the optimal design of spacecraft.Spacecraft survivability assessment includes spacecraft impact sensitivity analysis and spacecraft component vulnerability analysis under MM/OD environment.The impact sensitivity refers to the probability of a spacecraft encountering an MM/OD impact while in orbit.Vulnerability refers to the probability that each component of a spacecraft may fail or malfunction when impacted by space debris.Yet this paper mainly analyzes the impact sensitivity and proposes a spacecraft sensitivity assessment method under the MM/OD environment based on a panel method.Under this panel method,a spacecraft geometric model is discretized into small panels,and whether they are impacted by MM/OD or not is determined through the analysis of the shielding or shadowing relationships between panels.The number of impacts on each panel is obtained through calculation,and accordingly the probability of each spacecraft component encountering MM/OD impact can be acquired,thus generating the impact sensibility.This paper extracts data from the NASA’s ORDEM2000,the ESA’s MASTER8 as well as the SDEEM2015(Space Debris Environmental Engineering Model developed by HIT),and uses the PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)method to interpolate and fit the size-flux relationship of space debris.Compared with linear interpolation and cubic spline interpolation,the fitting results through the method are relatively more accurate.The feasibility of this method is also demonstrated through two actual examples shown in this paper,whose results are close to those from ESABASE,although there are some minor errors mainly due to different debris data input.Through the cross-check by three risk assessment software-BUMPER,MDPANTO and MODAOST-under standard operating conditions,the feasibility of this method is again verified.