期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
1
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于实测不均衡小样本的配电网高阻接地故障检测方法 被引量:1
2
作者 高伟 何文秀 +1 位作者 郭谋发 白浩 《高电压技术》 北大核心 2025年第3期1135-1144,I0001,共11页
为了应对实际配电网高阻接地故障信号微弱多变、数据稀缺等问题,提出一种基于实测不均衡小样本的高阻接地故障检测新方法。首先,使用基于压缩-激励网络的多头变分自编码器增殖模型,扩充小样本数据集。其次,将数据进行滤波处理后,分别提... 为了应对实际配电网高阻接地故障信号微弱多变、数据稀缺等问题,提出一种基于实测不均衡小样本的高阻接地故障检测新方法。首先,使用基于压缩-激励网络的多头变分自编码器增殖模型,扩充小样本数据集。其次,将数据进行滤波处理后,分别提取其时、频域特征。鉴于高阻故障特征微弱,增殖模型无法生成全面、有效的故障特征这一事实,进一步提出基于梯度调和机制的类别型特征提升(gradient harmonized mechanism-categorical boosting,GHM-Cat Boost)算法,引入梯度调和机制损失函数,让模型均衡易分样本和难分样本的关注度,从而解决过拟合问题。研究结果表明,数据增殖模型能够生成兼具仿真数据多样性与实测数据随机性特点的故障样本,提高了数据的可利用性。且所提GHM-Cat Boost模型的故障识别准确率可以达到97.21%,优于其对比分类器模型。通过测试和对比分析,验证了所提方案的有效性。 展开更多
关键词 配电网 高阻接地 故障检测 时频特征提取 变分自编码器 注意力机制 CatBoost
在线阅读 下载PDF
基于多尺度量化特征的视频异常行为检测算法
3
作者 马建红 王亚辉 +1 位作者 靳岩 卫权岗 《郑州大学学报(理学版)》 北大核心 2025年第5期39-45,共7页
视频异常行为检测在监控安防领域具有很高的应用价值。针对生成视频帧的自编码器模型在编码器与解码器间进行跳跃连接时会导致异常信息泛化的问题,提出一种基于多尺度量化特征的视频异常行为检测算法。首先,编码器学习正常帧并分层进行... 视频异常行为检测在监控安防领域具有很高的应用价值。针对生成视频帧的自编码器模型在编码器与解码器间进行跳跃连接时会导致异常信息泛化的问题,提出一种基于多尺度量化特征的视频异常行为检测算法。首先,编码器学习正常帧并分层进行矢量量化,解码器根据量化后的特征进行视频帧生成,避免了编码器和解码器之间直接进行信息传递,显著降低了泛化影响,提高帧生成质量。其次,对生成的帧使用金字塔变形模块进行多样性测量,通过计算生成帧和原始帧的变形来测量异常的严重程度。最后,融合生成帧的重建误差计算得到异常评分。在公共数据集上测试了算法的异常检测性能,实验结果显示,所提算法的AUC值均高于同类算法。 展开更多
关键词 视频异常检测 多尺度 矢量量化 变分自编码器
在线阅读 下载PDF
基于改进通道注意力优化变分自编码器的居民空调负荷辨识
4
作者 王凌云 唐涛 +2 位作者 鲍刚 阮胜冬 张涛 《仪器仪表学报》 北大核心 2025年第5期251-263,共13页
居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进... 居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进ECA采用结合全局平均池化与全局最大池化的双池化策略,既捕获整体统计信息又突出局部显著响应。借助压缩-重构机制,在降维后利用快速动态卷积核自适应捕捉局部通道交互信息,有效聚焦关键信息,为通道赋予合理权重;将改进ECA集成在VAE解码器中,增强模型对空调负荷的特征重构能力;模型进一步引入多任务学习框架,联合优化功率分解与状态识别任务,实现任务间信息共享和互补,从而提高整体辨识精度。同时,利用输出模块和后处理状态阈值约束,有效抑制非空调负荷的干扰。最后,在真实居民用电数据集上进行实验验证。实验结果表明,相较于两个对比模型,模型在3个地区所有居民功率分解的平均绝对误差(MAE)均值分别提升59.71%和9.22%,空调状态识别F1值达84.58%。消融实验表明,改进ECA使其中两个地区功率分解MAE分别降低56.23%和12.47%,多任务学习框架进一步推动辨识精度提升3.17%和5.90%。所提出的少量侵入式测量方案以30%用户侵入式量测数据训练,在保证模型准确性的同时,减少对用户数据的依赖,具有较强的应用潜力。 展开更多
关键词 居民空调负荷 变分自编码器 非侵入式负荷监测 通道注意力 多任务学习
在线阅读 下载PDF
基于改进GAN的人机交互手势行为识别方法
5
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
在线阅读 下载PDF
面向有向图的特征提取与表征学习研究
6
作者 谭郁松 张钰森 蹇松雷 《计算机工程与应用》 北大核心 2025年第3期234-241,共8页
图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然... 图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然而,现有方法在有效提取有向图的方向信息方面仍然存在挑战,主要依赖于节点的局部信息进行特征提取,难以充分利用有向边蕴含的方向信息。为解决这一问题,提出了一种名为变分有向图自编码器(variational directed graph autoencoder,VDGAE)的无监督表示学习方法。VDGAE通过关联矩阵来建模节点与边之间的关联关系,通过计算节点与边之间的亲和力,来重构输入有向图,从而实现无监督表征学习。基于此,VDGAE能够同时为输入有向图学习节点与边的表征,充分捕获有向图的结构信息和方向信息并嵌入至节点与边的表征向量中,使得有向图能够被更准确地表征。实验结果表明,相较于11个基准方法,VDGAE在5个数据集上节点分类任务均优于基准方法,提升了11.96%的预测精度,充分验证了其有效性。 展开更多
关键词 有向图 表征学习 关联矩阵 图神经网络 变分自编码器
在线阅读 下载PDF
变分模态分解和自适应稀疏自编码器的故障诊断模型
7
作者 吴亚丽 冯梦琦 +2 位作者 王君虎 董昂 杨延西 《机械科学与技术》 北大核心 2025年第9期1603-1611,共9页
针对旋转机械滚动轴承故障诊断中变分模态分解的参数选择和稀疏自编码器网络结构难以确定的问题,该文提出了一种粒子群算法优化的变分模态分解与稀疏自编码器相结合的故障诊断模型。首先计算包络熵确定变分模态算法的分解层数和模态分量... 针对旋转机械滚动轴承故障诊断中变分模态分解的参数选择和稀疏自编码器网络结构难以确定的问题,该文提出了一种粒子群算法优化的变分模态分解与稀疏自编码器相结合的故障诊断模型。首先计算包络熵确定变分模态算法的分解层数和模态分量,通过信号分解和降噪从而实现最佳分量的筛选。接着计算最佳分量的包络谱并将其作为稀疏自编码器的输入,引入粒子群算法优化稀疏自编码器的网络结构,获得自动提取振动数据的最优特征表示能力,在满足模型较优的特征学习能力的前提下极大地增强了模型的适应性。对凯斯西储大学轴承和变速轴承数据集的故障类型识别的仿真结果表明,该文所提方法拥有较强自适应性和较优的准确率。 展开更多
关键词 变分模态分解 包络熵 稀疏自编码器 粒子群算法 故障诊断
在线阅读 下载PDF
基于自注意力机制与高斯混合变分自编码器的飞行轨迹聚类方法研究
8
作者 张召悦 李莎 鲍水达 《河南科技大学学报(自然科学版)》 北大核心 2025年第1期25-33,M0003,M0004,共11页
为精确识别飞行轨迹的运行模式,提出了一种基于自注意力机制(SA)与高斯混合变分自编码器(GMVAE)的飞行轨迹聚类方法。SA-GMVAE是一种端到端的深度聚类方法,GMVAE利用变分推断估计每条轨迹的潜在分布,将输入的飞行轨迹数据映射到由多个... 为精确识别飞行轨迹的运行模式,提出了一种基于自注意力机制(SA)与高斯混合变分自编码器(GMVAE)的飞行轨迹聚类方法。SA-GMVAE是一种端到端的深度聚类方法,GMVAE利用变分推断估计每条轨迹的潜在分布,将输入的飞行轨迹数据映射到由多个高斯分布组成的潜在空间,同时依据轨迹分布特征进行聚类。考虑到GMVAE无法兼顾潜在特征的全局关键信息,将自注意力机制嵌入到编码器中,以便于在特征提取时能够捕获全局依赖关系并自动分配权重,突出关键特征,提升轨迹聚类效果。最后,以天津滨海国际机场的进场飞行轨迹数据集为例验证了模型的有效性,实验结果表明:SA-GMVAE相较于K-means、DBSCAN、DTW+HDBSCAN、AE+DP与AE+GMM 5种聚类方法,轮廓系数分别提高了27.6%、20.2%、18.2%、18.6%、15.7%;与未引入自注意力机制的GMVAE聚类模型相比,轮廓系数提高了9.5%,能够更准确地对飞行轨迹进行聚类。 展开更多
关键词 飞行轨迹 模式识别 变分自编码器 自注意力机制
在线阅读 下载PDF
计及小概率场景能源管线风险的综合能源系统多目标扩展规划
9
作者 黄南天 赵暄远 +1 位作者 蔡国伟 郭玉 《电气工程学报》 北大核心 2025年第1期197-207,共11页
随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩... 随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩展规划方法。建立基于耦合对抗变分自编码器的场景生成模型,生成冷-热-电-气负荷场景,获取典型场景与小概率高用能场景;在此基础上,以系统扩展规划成本最低及小概率高用能场景能源管线风险最低为目标,建立计及小概率高用能场景的冷-热-电-气综合能源系统扩展规划模型;采用改进麻雀搜索优化算法进行算例求解,实现冷-热-电-气综合能源系统扩展规划,提升综合能源系统扩展规划经济性与运行可靠性。 展开更多
关键词 综合能源系统 扩展规划 小概率高用能场景 耦合对抗变分自编码器 改进麻雀搜索优化算法
在线阅读 下载PDF
基于噪声抑制的智能反射面辅助通信系统的信道估计研究
10
作者 叶中付 郭佳愉 +1 位作者 于润祥 黄心月 《数据采集与处理》 北大核心 2025年第4期962-971,共10页
针对用户设备到基站(Base station,BS)的视距通信受阻时智能反射面(Intelligent reflecting surface,IRS)辅助通信系统的信道估计任务,提出了一种基于潜在特征空间噪声抑制的神经网络,可以实现精确的信道估计。该神经网络将变分自编码器... 针对用户设备到基站(Base station,BS)的视距通信受阻时智能反射面(Intelligent reflecting surface,IRS)辅助通信系统的信道估计任务,提出了一种基于潜在特征空间噪声抑制的神经网络,可以实现精确的信道估计。该神经网络将变分自编码器(Variational auto-encoder,VAE)模型和UNet模型相结合,能够在进行信道估计的同时对输入信号中的噪声进行处理。首先,VAE模型的输入是纯净的基站接收信号,以最小化估计的纯净的基站接收信号与其真实值之间的误差为目标,使VAE模型的编码器映射出一个特征向量,作为纯净接收信号的潜在表示。其次,固定VAE模型部分,使用纯净的基站接收信号作为UNet模型的输入对整个神经网络进行训练,在此过程中,VAE模型学习到的纯净潜在特征向量有助于UNet模型的编码器学习到纯净的特征表示。接着,该特征被UNet模型的解码器解码以实现信道估计任务。最后,在估计阶段仅需利用UNet模型部分即可。仿真实验结果表明,本文所提出的信道估计方法可以有效抑制特征空间中的噪声信息,能以更低的时间复杂度更准确地估计出信道信息。 展开更多
关键词 智能反射面 信道估计 噪声抑制 变分自编码器 UNet模型
在线阅读 下载PDF
基于VMD和改进Transformer模型的镍镉蓄电池SOH预测研究
11
作者 于天剑 冯恩来 +1 位作者 伍珣 张庆东 《铁道科学与工程学报》 北大核心 2025年第7期3266-3279,共14页
动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode d... 动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode decomposition,VMD)和改进的Transformer模型,提出一种综合预测框架。首先,通过白鲸优化算法(beluga whale optimization,BWO)对VMD的超参数进行优化,利用VMD分解重构准确捕捉电池在其整个生命周期中的容量退化特性,消除蓄电池记忆效应对SOH预测研究带来的不良影响;其次,在Transformer编码模块中嵌入了长短时记忆网络自编码模块(long short-term memory network autoencoder,LSTM Autoencoder),以有效提取电池健康退化的短期特征信息并压缩数据维度,从而降低模型复杂度;最后,将Transformer解码层替换为全连接神经网络,以降低模型复杂度和减少预测误差累积现象,从而提高模型的预测性能和运行效率。并且在验证方案中,以实际动车组蓄电池为研究对象,通过消融实验以及横向对比实验双向证明研究算法具有最高的预测精度,输出预测结果在均方根误差、平均绝对误差相较于其他模型平均降低了60.83%和62.14%,在决定系数上平均提升了6.73%,具有高度的准确性和鲁棒性。可以实现对电池SOH实现精确的预测,对电池健康状态进行有效监控,为电池检修工作提供数据支撑和方法支持。 展开更多
关键词 镍镉蓄电池 SOH预测 变分模态分解 长短时记忆网络自编码器 改进Transformer模型
在线阅读 下载PDF
用于电类实验测量数据异常检测的MVAE神经网络 被引量:2
12
作者 申赞伟 刘彦博 +3 位作者 杨柳 曹淋涵 熊英杰 张峰 《实验室研究与探索》 北大核心 2025年第1期24-29,共6页
电类实验课中测量数据对错的人工评判降低了课堂教学的效率和质量。为此,提出一种改进变分自编码器(MVAE)神经网络,利用均值漂移方法得到实验测量数据的隐变量均值;以实验测量数据的训练集样本为输入,基于反向传播算法对MVAE参数进行训... 电类实验课中测量数据对错的人工评判降低了课堂教学的效率和质量。为此,提出一种改进变分自编码器(MVAE)神经网络,利用均值漂移方法得到实验测量数据的隐变量均值;以实验测量数据的训练集样本为输入,基于反向传播算法对MVAE参数进行训练,得到实验测量数据的隐变量标准差和隐变量的正态分布。若待判决的测试样本编码后的数据位于隐变量正态分布的2个标准差范围外,则该样本为异常数据,即错误测量数据。研究结果表明,MVAE模型不仅提高了学习效率,而且提高了异常检测判别的准确率。 展开更多
关键词 电类实验课程 变分自编码器 神经网络 异常检测
在线阅读 下载PDF
基于深度学习的运动分析数字孪生系统 被引量:1
13
作者 黄欢 邱涛 +2 位作者 甄庆凯 陈骐 王勇 《中国体育科技》 北大核心 2025年第3期44-54,共11页
运动分析技术被广泛应用于体育科学、康复医学和人体工程学等领域。然而,为了保证动作数据的完整性,传统的动作捕捉系统需要手动调整相机布局或增加相机数量以确保场地覆盖,导致成本较高。此外,在使用测力板时,每次实验仅能获得特定受... 运动分析技术被广泛应用于体育科学、康复医学和人体工程学等领域。然而,为了保证动作数据的完整性,传统的动作捕捉系统需要手动调整相机布局或增加相机数量以确保场地覆盖,导致成本较高。此外,在使用测力板时,每次实验仅能获得特定受测者的力学数据,而对于不同身高和体重的受测者,该数据无法重复利用。针对上述问题,研究设计了一个基于深度学习的运动分析数字孪生系统。该系统不仅能够模拟动作捕捉环境,优化相机姿态,还能计算复杂动作下人体与环境的接触力。该系统利用变分自编码器和强化学习,通过有限的动作片段生成连续动作序列点云;使用粒子群算法优化相机姿态,实现对动作序列点云的最佳覆盖;在仿真环境中,采用生成对抗模拟学习方法训练人形机器人完成各种动作,进而计算地面接触力,并与测力板的实测数据进行对比,以验证其精度。研究结果显示,粒子群算法能够极大提高相机对动作点云的覆盖率;在双足行走场景下,仿真接触力与实测数据相比误差小于10%。运动分析数字孪生系统可以在仿真环境中生成不同参数下的人体动作,无需依赖测力板,即可为生物力学分析提供约束力,具有广泛的应用前景。 展开更多
关键词 运动分析 数字孪生 变分自编码器 强化学习 粒子群算法
在线阅读 下载PDF
基于半监督学习双模型结构的注塑产品异常检测 被引量:2
14
作者 陈昱 项薇 +3 位作者 林文文 龚川 张怀志 虞任豪 《中国机械工程》 北大核心 2025年第3期576-583,共8页
质量数据分布的不平衡及分类边界的模糊性限制了传统分类器的性能,阻碍了企业智能生产决策的高效实施。为此,提出了一种基于双模型结构的深度生成模型异常检测方法,根据尺寸数据分布将合格产品等级进行二分类,即优秀及次优,分别用于训... 质量数据分布的不平衡及分类边界的模糊性限制了传统分类器的性能,阻碍了企业智能生产决策的高效实施。为此,提出了一种基于双模型结构的深度生成模型异常检测方法,根据尺寸数据分布将合格产品等级进行二分类,即优秀及次优,分别用于训练两个深度生成模型,考虑数据分布特点设计加权集成,基于计算的异常分数对产品进行合格性判定。以变分自编码器(VAE)、Wasserstein生成对抗网络(WGAN)为子模型开发了两个双模型结构,测试结果显示,相较于单模型结构,基于双模型的VAE和WGAN在测试集上的分类准确率分别提高了4.5%和6%。 展开更多
关键词 产品质量 异常检测 变分自编码器 Wasserstein生成对抗网络 双模型结构
在线阅读 下载PDF
基于变分自编码器的多源数据融合窃电检测方法 被引量:3
15
作者 蔡梓文 赵云 +3 位作者 陆煜锌 顾莲墙 陈康 高云鹏 《电力系统保护与控制》 北大核心 2025年第4期176-187,共12页
针对当前窃电检测仅使用单一用电负荷难以捕捉复杂窃电特征,导致窃电检测发生误判,存在误检率高和准确率低下等问题,提出一种融合用电负荷、环境温度、时间以及对应台区相位线损的新型窃电检测方法。首先构建多维度特征提取变分自编码器... 针对当前窃电检测仅使用单一用电负荷难以捕捉复杂窃电特征,导致窃电检测发生误判,存在误检率高和准确率低下等问题,提出一种融合用电负荷、环境温度、时间以及对应台区相位线损的新型窃电检测方法。首先构建多维度特征提取变分自编码器(variational autoencoder for multi-dimensional feature extraction,MF-VAE)来提取用户用电行为的多维度特征。然后,基于注意力时序卷积网络(attention temporal convolutional networks,ATCN)建立判别模型,再通过膨胀卷积和因果卷积获取多维度窃电行为特征的时序关系。同时,引入卷积注意力模块分配各维度特征的注意力权重,以提高模型的表现和泛化能力。最后采用Softmax分类器完成对多源数据中潜在窃电行为的准确识别。实验结果表明,用该方法提取的窃电行为特征更加丰富和多元化,能够有效降低窃电检测误检率并提高窃电行为判别准确率。 展开更多
关键词 窃电行为判别 多源数据融合 改进时域卷积网络 变分自编码器 注意力机制
在线阅读 下载PDF
面向室内地下遮蔽空间的定位可信性提升方法 被引量:1
16
作者 易卿武 黄璐 +1 位作者 蔚保国 廖桂生 《电子与信息学报》 北大核心 2025年第5期1529-1542,共14页
该文提出一种无监督自编码器及非线性滤波结合的室内定位可信性提升方法,设计了深度卷积神经网络辅助的降噪变分自编码器模型(DVAE-CNN),分别从量测数据质量评估、目标状态转移方程表征以及环境先验信息辅助的权重更新策略多方面调控定... 该文提出一种无监督自编码器及非线性滤波结合的室内定位可信性提升方法,设计了深度卷积神经网络辅助的降噪变分自编码器模型(DVAE-CNN),分别从量测数据质量评估、目标状态转移方程表征以及环境先验信息辅助的权重更新策略多方面调控定位结果,克服复杂室内环境下由于信息丢失、出错、扰动等因素带来的定位可信性低的问题,相比未增加可信调控机制的定位结果平均定位精度提升了74.6%,定位可靠性提高了88.2%。最后,在2022北京冬奥会体育场馆内进行了大量试验,结果表明所提方法能够提供高鲁棒、高可信、高连续的位置服务能力,具有较大的应用及推广价值。 展开更多
关键词 室内定位 可信评估 降噪变分自编码器 多源融合 粒子过滤
在线阅读 下载PDF
基于生成式人工智能的眼动样本生成及识别
17
作者 谭雪青 宋军 +1 位作者 张慢慢 臧传丽 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期145-153,共9页
目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深... 目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深度增加而导致的不透明性和不可解释性问题,并深入挖掘与幼儿语言发展相关的眼动数据,方法采集4~6岁幼儿理解不同焦点结构的眼动数据,采用生成式人工智能模型-变分自编码器(variational autoencoder,VAE)和传统模型-多层感知器(multi-layer perceptron,MLP)识别眼动模式的发展差异并尝试生成新样本,基于灰色关联分析和混淆矩阵对生成式数据集进行解释。结果结果表明:(1)VAE生成的4岁组、5岁组和6岁组幼儿眼动数据集精度高于MINIST数据集(mixed National Institute of Standards and Technology database),且与MLP分析结果一致,具有准确性、多样性和一定的可解释性;(2)生成式眼动数据及混淆矩阵结果表明,在无焦点结构句式中,幼儿在4~5岁、5~6岁两个阶段理解水平均有提升,而宾语焦点结构和主语焦点结构的眼动特征在4~5岁变化较小,5~6岁变化较大,说明幼儿对焦点结构的理解在5岁是一个关键期,这符合幼儿焦点结构理解发展规律。结论提出的人工智能耦合分析方法,具备有效识别眼动特征发展模式的能力,并能据此生成可靠的新样本。这一方法不仅为生成式人工智能与眼动技术的融合开辟了新的途径,而且为复杂语言理解问题提供了全新的思考方向。 展开更多
关键词 生成式人工智能 变分自编码器 多层感知器 眼动
在线阅读 下载PDF
基于VAE-EGAN架构的地震脉冲干扰异常检测
18
作者 严英殊 余贞侠 +2 位作者 文晓涛 王秋成 文武 《西安石油大学学报(自然科学版)》 北大核心 2025年第3期1-11,共11页
在地震勘探采集现场,脉冲信号作为一种干扰,严重影响地震采集记录的品质,是地震采集现场重点监控的干扰对象。为准确检测脉冲信号,减少地震脉冲信号对后续地震数据处理和解释的影响,提出一种基于VAE-EGAN架构的异常检测方法。该方法结... 在地震勘探采集现场,脉冲信号作为一种干扰,严重影响地震采集记录的品质,是地震采集现场重点监控的干扰对象。为准确检测脉冲信号,减少地震脉冲信号对后续地震数据处理和解释的影响,提出一种基于VAE-EGAN架构的异常检测方法。该方法结合变分自编码器VAE的生成稳定性与生成对抗网络GAN的判别能力,通过权值衰减和谱归一化技术降低模型过拟合的可能。新设计的损失函数结合多个判别器的独特结构,提高了GAN在异常捕捉任务上的竞争力。西部某工区实际地震数据的实验结果表明,该方法的异常检测准确率和F1值分别达到93.75%和96.77%,异常定位准确率和F1值分别达到89.82%和92.73%。实验结果验证了该方法在提升脉冲信号异常检测精度方面的有效性,降低了地震数据处理中脉冲信号检测的复杂性,有助于保障地震数据的准确性。 展开更多
关键词 地震脉冲 异常检测 生成对抗网络 变分自编码器
在线阅读 下载PDF
基于变分自编码器的太赫兹信道多径分簇算法
19
作者 郝昕宇 廖希 +4 位作者 郑相全 王洋 林峰 陈前斌 张杰 《通信学报》 北大核心 2025年第6期89-100,共12页
针对太赫兹信道中多径分簇算法在多维参数适应性和无监督特征分离中的不足,提出了一种基于变分自编码器的潜层空间多径分簇(VAE-LMC)模型。首先,通过变分自编码器(VAE)学习多径时延与到达角度的潜在表示,增强特征可分离性。其次,将K-Me... 针对太赫兹信道中多径分簇算法在多维参数适应性和无监督特征分离中的不足,提出了一种基于变分自编码器的潜层空间多径分簇(VAE-LMC)模型。首先,通过变分自编码器(VAE)学习多径时延与到达角度的潜在表示,增强特征可分离性。其次,将K-Means分簇嵌入VAE框架,联合优化重构损失、KL散度和分簇损失函数,解决无监督学习中的特征分离难题。最后,在潜层空间完成多径分簇并将结果映射至真实数据空间。在小型工厂场景中开展129.5~135 GHz的太赫兹信道测量,构建训练数据集和测试数据集。实验结果表明,VAE-LMC模型在簇内和簇间特性、环境一致性及复杂度等方面均有显著优势,为复杂场景下的太赫兹信道多径分簇提供了高效解决方案。 展开更多
关键词 太赫兹信道 信道测量 多径分簇 变分自编码器 无监督学习
在线阅读 下载PDF
基于转录组学和变分自编码器的癌症分期诊断研究
20
作者 李佳芮 钱力 +3 位作者 沈俊杰 郭泓麟 秦茂洋 伍亚舟 《陆军军医大学学报》 北大核心 2025年第6期613-622,共10页
目的旨在对10种癌症转录组学数据开展深度分析与特征提取,进而实现对癌症样本的分期诊断。方法在UCSC Xena网站收集发病率最高的10种癌症转录组学数据(包含4938个样本和59428个基因),以变分自编码器为基础,利用特征重要性排序思想,通过... 目的旨在对10种癌症转录组学数据开展深度分析与特征提取,进而实现对癌症样本的分期诊断。方法在UCSC Xena网站收集发病率最高的10种癌症转录组学数据(包含4938个样本和59428个基因),以变分自编码器为基础,利用特征重要性排序思想,通过引入掩码算法和增量特征选择方法(incremental feature selection,IFS),构建了增量特征排序选优变分自编码器(incremental feature ranking and selection variational autoencoder,IFRSVAE);与随机森林(random forest,RF)、支持向量机(support vector machine,SVM)和极限梯度提升树(eXtreme gradient boosting,XGboost)结合测试了该方法的性能,并同其他方法进行比较。结果提取了21个特征用于后续分类,较于传统变分自编码器、递归特征消除和Lasso回归模型,IFRSVAE模型在3种分类器上均取得了较好性能(AUC值最高,其余指标也表现良好);其中IFRSVAE-RF表现最好,AUC达到了85.49%(95%CI:83.24%~87.74%)。此外,还应用了沙普利加性解释(Shapley additive explanations,SHAP)模型对特征贡献进行展示。结论本研究探索并验证了IFRSVAE在特征提取方面具备一定成效。基于此构建的IFRSVAE-RF模型,在癌症分期诊断任务中展现出较好的表现,为深度学习在癌症分期诊断方法的研究方向上,提供了一种可供参考的新思路。 展开更多
关键词 癌症分期 转录组学 变分自编码器 机器学习
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部