期刊文献+
共找到2,425篇文章
< 1 2 122 >
每页显示 20 50 100
Research on Transfer Learning in Surface Defect Detection of Printed Products 被引量:1
1
作者 ZHU Xin-yu SI Zhan-jun CHEN Zhi-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期38-44,共7页
To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and tr... To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and transfer learning-based method for printing defect detection was proposed in this study.This method enabled defect detection in printed surface without the need for extensive labeled defect.The ResNet101-SSTU model was used in this study.On the public dataset of printing defect images,the ResNet101-SSTU model not only achieves comparable performance and speed to mainstream supervised learning detection models but also successfully addresses some of the detection challenges encountered in supervised learning.The proposed ResNet101-SSTU model effectively eliminates the need for extensive defect samples and labeled data in training,providing an efficient solution for quality inspection in the printing industry. 展开更多
关键词 transfer learning UNSUPERVISED Defect detection PRINTING
在线阅读 下载PDF
Improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning
2
作者 ZHANG Wen-gang LIU Song-lin +3 位作者 WANG Lu-qi SUN Wei-xin ZHANG Yan-mei NIE Wen 《Journal of Central South University》 CSCD 2024年第11期3823-3837,共15页
Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarci... Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances. 展开更多
关键词 data-limited cases transfer learning landslide susceptibility machine learning normalization based on the parameters of the source domain
在线阅读 下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:5
3
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
在线阅读 下载PDF
Error assessment of laser cutting predictions by semi-supervised learning
4
作者 Mustafa Zaidi Imran Amin +1 位作者 Ahmad Hussain Nukman Yusoff 《Journal of Central South University》 SCIE EI CAS 2014年第10期3736-3745,共10页
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values. 展开更多
关键词 semi-supervised learning training algorithm kerf width edge quality laser cutting process artificial neural network(ANN)
在线阅读 下载PDF
Tomato detection method using domain adaptive learning for dense planting environments 被引量:1
5
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
在线阅读 下载PDF
Maneuvering target tracking of UAV based on MN-DDPG and transfer learning 被引量:15
6
作者 Bo Li Zhi-peng Yang +2 位作者 Da-qing Chen Shi-yang Liang Hao Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期457-466,共10页
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble... Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments. 展开更多
关键词 UAVS Maneuvering target tracking Deep reinforcement learning MN-DDPG Mixed noises transfer learning
在线阅读 下载PDF
Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning 被引量:2
7
作者 Xi Zhi-fei Kou Ying-xin +4 位作者 Li Zhan-wu Lv Yue Xu An Li You Li Shuang-qing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期187-206,共20页
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta... Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets. 展开更多
关键词 Maneuver trajectory prediction Volterra series transfer learning Online learning Ensemble learning Robust regularization
在线阅读 下载PDF
Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 被引量:4
8
作者 LIU Wenzhang DONG Lu +1 位作者 LIU Jian SUN Changyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期447-460,共14页
In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with... In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with a specific number of agents, and can learn well-performed policies. However, if there is an increasing number of agents, the previously learned in may not perform well in the current scenario. The new agents need to learn from scratch to find optimal policies with others,which may slow down the learning speed of the whole team. To solve that problem, in this paper, we propose a new algorithm to take full advantage of the historical knowledge which was learned before, and transfer it from the previous agents to the new agents. Since the previous agents have been trained well in the source environment, they are treated as teacher agents in the target environment. Correspondingly, the new agents are called student agents. To enable the student agents to learn from the teacher agents, we first modify the input nodes of the networks for teacher agents to adapt to the current environment. Then, the teacher agents take the observations of the student agents as input, and output the advised actions and values as supervising information. Finally, the student agents combine the reward from the environment and the supervising information from the teacher agents, and learn the optimal policies with modified loss functions. By taking full advantage of the knowledge of teacher agents, the search space for the student agents will be reduced significantly, which can accelerate the learning speed of the holistic system. The proposed algorithm is verified in some multi-agent simulation environments, and its efficiency has been demonstrated by the experiment results. 展开更多
关键词 knowledge transfer multi-agent reinforcement learning(MARL) new agents
在线阅读 下载PDF
Range estimation of few-shot underwater sound source in shallow water based on transfer learning and residual CNN 被引量:3
9
作者 YAO Qihai WANG Yong YANG Yixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期839-850,共12页
Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in ... Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods. 展开更多
关键词 transfer learning residual convolutional neural network(CNN) few shot vertical array range estimation
在线阅读 下载PDF
Autonomous landing scene recognition based on transfer learning for drones 被引量:1
10
作者 DU Hao WANG Wei +1 位作者 WANG Xuerao WANG Yuanda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期28-35,共8页
In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same sc... In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same scene has different representations in different altitudes, we employ a deep convolutional neural network(CNN) based on knowledge transfer and fine-tuning to solve the problem. Then, LandingScenes-7 dataset is established and divided into seven classes. Moreover, there is still a novelty detection problem in the classifier, and we address this by excluding other landing scenes using the approach of thresholding in the prediction stage. We employ the transfer learning method based on ResNeXt-50 backbone with the adaptive momentum(ADAM) optimization algorithm. We also compare ResNet-50 backbone and the momentum stochastic gradient descent(SGD) optimizer. Experiment results show that ResNeXt-50 based on the ADAM optimization algorithm has better performance. With a pre-trained model and fine-tuning, it can achieve 97.845 0% top-1 accuracy on the LandingScenes-7dataset, paving the way for drones to autonomously learn landing scenes. 展开更多
关键词 landing scene recognition convolutional neural network(CNN) transfer learning remote sensing image
在线阅读 下载PDF
Research on Automatic Diagnostic Technology of Soybean Leaf Diseases Based on Improved Transfer Learning
11
作者 Yu Xiao Jing Yong-dong Zheng Lu-lu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第2期62-72,共11页
Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer ... Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer learning,a classification method of the soybean leaf diseases was proposed in this paper.In detail,this method first removed the complicated background in images and cut apart leaves from the entire image;second,the data-augmented method was applied to amplify the separated leaf disease image dataset to reduce overfitting;at last,the automatically fine-tuning convolutional neural network(AutoTun)was adopted to classify the soybean leaf diseases.The proposed method respectively reached 94.23%,93.51%and 94.91%of validation accuracy rates on VGG-16,ResNet-34 and DenseNet-121,and it was compared with the traditional fine-tuning method of transfer learning.The results indicated that the proposed method had superior to the traditional transfer learning method. 展开更多
关键词 transfer learning deep convolutional neural network classification recognition soybean disease
在线阅读 下载PDF
Progressive transductive learning pattern classification via single sphere
12
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
在线阅读 下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
13
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
在线阅读 下载PDF
基于改进Res2Net与迁移学习的水果图像分类 被引量:2
14
作者 吴迪 肖衍 +2 位作者 沈学军 万琴 陈子涵 《电子科技大学学报》 北大核心 2025年第1期62-71,共10页
针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成... 针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成卷积核,利用meta-ACON激活函数优化ReLU激活函数,动态学习激活函数的线性和非线性,自适应选择是否激活神经元;其次,采用基于模型迁移的训练方式进一步提升分类的效率与鲁棒性。实验结果表明,该算法在Fruit-Dataset和Fruits-360数据集上的测试准确率相比Res2Net提升了1.2%和1.0%,召回率相比Res2Net提升了1.13%和0.89%,有效提升了水果图像分类性能。 展开更多
关键词 图像分类 Res2Net 动态多尺度融合注意力 激活函数 迁移学习
在线阅读 下载PDF
基于EfficientNetV2-RetNet的端到端中文管制语音识别 被引量:1
15
作者 梁海军 常瀚文 +2 位作者 何一民 赵志伟 孔建国 《电讯技术》 北大核心 2025年第2期254-260,共7页
自动语音识别(Automatic Speech Recognition, ASR)技术在空中交通管制(Air Traffic Control, ATC)领域的应用有望提高通信效率、减少人为错误、提升安全性,并促进航空交通管理系统的创新和改进。然而,由于ATC通信通常涉及敏感信息,获... 自动语音识别(Automatic Speech Recognition, ASR)技术在空中交通管制(Air Traffic Control, ATC)领域的应用有望提高通信效率、减少人为错误、提升安全性,并促进航空交通管理系统的创新和改进。然而,由于ATC通信通常涉及敏感信息,获取大量带有标签的ATC语音数据较为困难,这给构建高准确度的ASR系统带来了巨大挑战。基于Retentive Network(RetNet)和迁移学习设计了一种新的端到端ASR框架EfficientNetV2-RetNet-CTC,用于ATC系统。EfficientNetV2的多层卷积结构有助于对语音信号提取更复杂的特征表示。RetNet使用多尺度保持机制学习序列数据上的全局时间动态,可以非常高效地处理长距离依赖性。连接时序分类不用强制对齐标签且标签可变长。此外,迁移学习通过在源任务上学习的知识来改善在目标任务上的性能,解决了民航领域数据资源稀缺的问题且提高了模型的泛化能力。实验结果表明,所设计的模型优于其他基线,在Aishell语料库上预训练的最低词错误率为7.6%和8.7%,在ATC语料库上降至5.6%和6.8%。 展开更多
关键词 空中交通管制 自动语音识别 端到端深度学习 迁移学习
在线阅读 下载PDF
基于回声状态网络的智能合约漏洞检测方法 被引量:1
16
作者 刘春霞 徐晗颖 +2 位作者 高改梅 党伟超 李子路 《计算机应用》 北大核心 2025年第1期153-161,共9页
区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确... 区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确率低的问题,而且,这些方法无法对新的合约漏洞进行检测。针对上述问题,提出一种基于回声状态网络(ESN)的智能合约漏洞检测方法。首先,根据合约图,对不同语义、语法边进行学习,并利用Skip-Gram模型训练得到特征向量;其次,结合ESN和迁移学习,实现对新合约漏洞的迁移扩展,以提高漏洞检测率;最后,在Etherscan平台搜集的智能合约数据集上进行实验。实验结果表明,所提方法的准确率、精确率、召回率和F1分数分别达到了94.30%、97.54%、91.68%和94.52%,与双向长短时记忆(BLSTM)网络、自注意力机制的双向长短时记忆(BLSTM-ATT)相比,所提方法的准确率分别提高了5.93和11.75个百分点,漏洞检测性能更优。消融实验也进一步验证了ESN对智能合约漏洞检测的有效性。 展开更多
关键词 漏洞检测 智能合约 回声状态网络 迁移学习 区块链
在线阅读 下载PDF
Ghost-YOLO:复杂环境下混凝土结构裂缝病害检测网络 被引量:2
17
作者 陈智丽 张伍彪 +1 位作者 王冰 李宇鹏 《计算机应用与软件》 北大核心 2025年第2期171-180,共10页
裂缝是混凝土结构桥梁最严重的病害之一,影响到整个桥梁结构的安全。提出一种新的Ghost-YOLO网络,用于检测不同环境下的混凝土结构裂缝病害。该网络有效结合GhostNet与YOLOv4网络优点,可在大幅减少网络模型参数的同时提高检测精度。为... 裂缝是混凝土结构桥梁最严重的病害之一,影响到整个桥梁结构的安全。提出一种新的Ghost-YOLO网络,用于检测不同环境下的混凝土结构裂缝病害。该网络有效结合GhostNet与YOLOv4网络优点,可在大幅减少网络模型参数的同时提高检测精度。为全面评估网络检测性能,构建不同环境下的大规模混凝土结构病害数据集,并应用迁移学习手段,成功将水上裂缝检测模型迁移至水下环境和户外实际工程环境。通过消融实验发现,Ghost-YOLO网络在不同复杂环境下均表现出较强的检测能力。将Ghost-YOLO网络与YOLOv4、Faster R-CNN、VFNet、YOLOF等先进的目标检测网络进行对比,结果显示Ghost-YOLO网络在裂缝检测准确度和速度方面都具有明显的优势。 展开更多
关键词 深度学习 GhostNet YOLOv4 裂缝检测 水下 迁移学习
在线阅读 下载PDF
基于深度迁移学习的Ti-6Al-4V合金微铣削毛刺尺寸预测 被引量:1
18
作者 吴凤和 王宇 +3 位作者 张会龙 张宁 马轩 王志勇 《制造技术与机床》 北大核心 2025年第4期63-69,共7页
针对钛合金微铣削加工易产生毛刺缺陷影响使用的问题,提出一种基于深度迁移学习的Ti-6Al-4V微铣削顶部毛刺尺寸预测方法。首先,以工艺参数(主轴转速、轴向切深、径向切宽和每齿进给量)为网络输入,以顶部毛刺长度为预测目标,建立了微铣... 针对钛合金微铣削加工易产生毛刺缺陷影响使用的问题,提出一种基于深度迁移学习的Ti-6Al-4V微铣削顶部毛刺尺寸预测方法。首先,以工艺参数(主轴转速、轴向切深、径向切宽和每齿进给量)为网络输入,以顶部毛刺长度为预测目标,建立了微铣削毛刺尺寸的预测模型。其次,使用625个切削仿真样本进行预训练。最后,基于迁移学习机制,借助100个切削试验样本对预训练结果进行微调,从而将仿真规律迁移至试验规律。结果表明,迁移学习模型对顺、逆铣两侧毛刺尺寸的平均预测精度分别达到了95.77%、95.45%,为钛合金微铣削毛刺的预测及控制提供了一种有效方法。 展开更多
关键词 微铣削毛刺 TI-6AL-4V合金 毛刺 尺寸预测 迁移学习 深度学习
在线阅读 下载PDF
基于视觉触觉双重迁移学习的番茄成熟度检测方法 被引量:1
19
作者 张鹏 杜东峰 +2 位作者 李爽 单东日 陈振学 《农业机械学报》 北大核心 2025年第1期74-83,共10页
针对当前自动化采摘过程中仅依赖视觉技术无法准确识别番茄成熟度的问题,提出了一种基于视觉触觉双重迁移学习的番茄成熟度检测方法。该方法首先采用视觉触觉双重迁移学习融合算法作为特征提取融合模块,解决无法有效提取番茄特征信息的... 针对当前自动化采摘过程中仅依赖视觉技术无法准确识别番茄成熟度的问题,提出了一种基于视觉触觉双重迁移学习的番茄成熟度检测方法。该方法首先采用视觉触觉双重迁移学习融合算法作为特征提取融合模块,解决无法有效提取番茄特征信息的问题。其次,将软参数共享-多标签分类方法作为分类模块,通过增加不同分类任务之间的关联性,避免出现过拟合的现象。本文主要针对成熟后为红、黄果等单一颜色的番茄品种,并在新开发的视觉触觉数据集进行实验研究。实验表明,软参数共享-多标签检测模型参数量为1.882×10^(7),成熟度AUC分值达到0.9773,对比不确定性加权损失、自适应硬参数共享、十字绣网络和软参数共享等检测模型,参数量分别下降3.08×10^(6)、6.16×10^(6)、3.08×10^(6)和3.08×10^(6),成熟度AUC分值分别提高0.0175、0.0179、0.0267和0.0089。这表明该方法在一定程度上提高了自动化采摘过程中对番茄成熟度的检测能力,为番茄成熟度检测问题提供了一种有效的解决方法。 展开更多
关键词 番茄成熟度 机器视觉 机器触觉 双重迁移学习 软参数共享-多标签
在线阅读 下载PDF
智能物联网中高效安全的自适应量化联邦学习 被引量:1
20
作者 马海英 沈金宇 +2 位作者 杨天玲 仇健 王占君 《计算机应用研究》 北大核心 2025年第8期2503-2510,共8页
针对现有自适应量化联邦学习存在参与者本地模型参数隐私泄露的问题,提出一种适合智能物联网的高效安全的自适应量化联邦学习方案。该方案利用自适应量化技术减少参与者的通信开销,设置两个聚合服务器,将Diffie-Hellman密钥交换协议、... 针对现有自适应量化联邦学习存在参与者本地模型参数隐私泄露的问题,提出一种适合智能物联网的高效安全的自适应量化联邦学习方案。该方案利用自适应量化技术减少参与者的通信开销,设置两个聚合服务器,将Diffie-Hellman密钥交换协议、秘密共享方案和不经意传输协议相结合,构造一种保护本地模型参数隐私的安全聚合协议,并在合理假设下证明所提方案的安全性。实验结果表明该方案能够获得较高准确率的全局模型,极大减少了参与者的通信开销和隐私保护计算开销,非常适用于智能物联网中资源受限的轻量级物联网设备。 展开更多
关键词 联邦学习 隐私保护 自适应量化 秘密共享 不经意传输协议
在线阅读 下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部