期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Graph Transformer技术与研究进展:从基础理论到前沿应用 被引量:1
1
作者 游浩 丁苍峰 +2 位作者 马乐荣 延照耀 曹璐 《计算机应用研究》 北大核心 2025年第4期975-986,共12页
图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系... 图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系和精确编码图的拓扑结构,Graph Transformer在节点分类、链接预测和图生成等任务中展现出卓越的性能和准确性。通过引入自注意力机制,Graph Transformer能够有效捕捉节点和边的局部及全局信息,显著提升模型效率和性能。深入探讨Graph Transformer模型,涵盖其发展背景、基本原理和详细结构,并从注意力机制、模块架构和复杂图处理能力(包括超图、动态图)三个角度进行细分分析。全面介绍Graph Transformer的应用现状和未来发展趋势,并探讨其存在的问题和挑战,提出可能的改进方法和思路,以推动该领域的研究和应用进一步发展。 展开更多
关键词 图神经网络 graph Transformer 图表示学习 节点分类
在线阅读 下载PDF
基于二部联合网络的属性缺失图学习方法
2
作者 韩忠明 张舒群 +2 位作者 刘燕 胡启文 杨伟杰 《复杂系统与复杂性科学》 北大核心 2025年第2期55-63,共9页
针对图数据中普遍存在的节点属性缺失问题,提出了一种新型的属性缺失图学习框架。该框架通过重构二部联合网络,将节点属性映射为边信息,使属性补全与图节点分类任务能够在统一框架下协同进行,灵活处理连续型数据和离散型数据缺失。并基... 针对图数据中普遍存在的节点属性缺失问题,提出了一种新型的属性缺失图学习框架。该框架通过重构二部联合网络,将节点属性映射为边信息,使属性补全与图节点分类任务能够在统一框架下协同进行,灵活处理连续型数据和离散型数据缺失。并基于属性图的属性同质性和结构同质性,提出一种基于二部联合网络的属性缺失表示学习方法,引入边嵌入和注意力机制捕获二部联合网络中属性-属性与结构-属性之间的相关性,从而提升缺失属性学习。在4个基准图数据集上的实验表明该方法在属性补全任务和后续节点分类任务中均优于基线方法,验证了该方法有效性。 展开更多
关键词 图神经网络 属性补全 节点分类 二部图 网络拓扑
在线阅读 下载PDF
基于Ollivier-Ricci曲率的图扩散节点分类算法
3
作者 孙宁 李胤萱 +2 位作者 张帅 汤璇 魏宪 《计算机应用研究》 北大核心 2025年第1期165-170,共6页
为解决图扩散方法在处理复杂边关系时精度降低的局限性,提出了一种基于曲率的图扩散神经网络。首先,引入Ollivier-Ricci曲率量化图的边曲率,提供关于图结构的几何度量;其次,运用曲率调整随机转移矩阵的权重,根据几何关系进行相应的权重... 为解决图扩散方法在处理复杂边关系时精度降低的局限性,提出了一种基于曲率的图扩散神经网络。首先,引入Ollivier-Ricci曲率量化图的边曲率,提供关于图结构的几何度量;其次,运用曲率调整随机转移矩阵的权重,根据几何关系进行相应的权重修改;最后,将处理后的曲率矩阵与图扩散矩阵结合,更新权重系数进行模型训练。实验结果表明,与传统的图扩散方法相比,改良后的方法保持了有效地平滑图信号和减少高频噪声的优点,并在不同边和节点数量的数据集上将精度提高0.3~2.0百分点。该方法通过优化图扩散的消息聚合,能够更有效地利用图结构中的节点信息和边权重,从而提升节点分类任务中的模型性能,为未来基于图方法的研究提供了更可靠的方法与实验。 展开更多
关键词 图神经网络 图扩散 Ollivier-Ricci曲率 节点分类
在线阅读 下载PDF
基于路径感知邻域的节点分类算法
4
作者 郑文萍 王晓敏 韩兆荣 《数据采集与处理》 北大核心 2025年第1期134-146,共13页
图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同... 图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同节点的差异性。针对此,提出了一种基于路径感知邻域的节点分类算法(Path connectivity based neighbor-awareness node classification algorithm,PCNA),通过网络中的路径连通信息确定节点邻域,并自适应地感知不同长度路径对节点间相似性计算的影响权重,指导图卷积神经网络的邻域聚合过程。PCNA由邻域感知器和节点分类器组成,邻域感知器基于强化学习机制自适应地获取每个节点的聚合邻域及不同长度路径的影响权重,再利用节点间的路径连通信息得到相似性矩阵;节点分类器利用所得相似性矩阵进行邻域聚合得到节点表示,并进行节点分类。在8个真实数据集上与10种经典算法的对比实验表明了所提算法在节点分类任务上有较好的性能。 展开更多
关键词 图卷积神经网络 邻域聚合 强化学习 节点相似性 节点分类
在线阅读 下载PDF
融合高阶组结构信息的节点分类算法
5
作者 郑文萍 韩艺恒 刘美麟 《计算机科学》 北大核心 2025年第2期107-115,共9页
节点的局部邻域内通常存在具有特定局部连接模式且频繁出现的高阶组结构,这些组结构可以更准确地刻画节点拓扑特征,有助于理解网络的结构特征及节点间的交互模式。基于此,利用节点局部邻域内的高阶组结构特征计算节点间的结构相似性,并... 节点的局部邻域内通常存在具有特定局部连接模式且频繁出现的高阶组结构,这些组结构可以更准确地刻画节点拓扑特征,有助于理解网络的结构特征及节点间的交互模式。基于此,利用节点局部邻域内的高阶组结构特征计算节点间的结构相似性,并提出了一种融合高阶组结构信息的节点分类算法NHGS(Node Classification Algorithm Fusing High-order Group Structure Information)。该算法将k元组内形成的不同构的导出子图作为其初始组标签,利用Weisfeiler-Lehman(WL)算法迭代地聚合其邻域k元组的标签信息以更新k元组标签;节点在不同k元组标签中的出现次数构成了节点的特征向量,利用节点间特征向量的相似性表示节点间的结构相似性;结合节点的属性信息,并通过自编码器神经网络得到节点嵌入,进而对网络中的节点进行分类。NHGS将节点局部邻域内的k元节点组结构信息与节点的属性信息相结合,得到了包含高阶结构信息的节点表示。在真实属性网络上的实验表明,所提方法能有效计算出节点间的结构相似性,提升了节点分类任务的性能。 展开更多
关键词 节点分类 高阶结构 结构相似性 网络表示 图神经网络
在线阅读 下载PDF
基于SER-GNN的小样本遥感影像分类研究
6
作者 葛小三 郑猛猛 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期144-151,共8页
目的为解决基于度量学习的遥感影像分类中小样本学习特征空间图像特征分布不明显问题,提出一种适用于小样本模型的遥感影像分类模型SER-GNN(SENet attention residual neural network and graph neural networks)。方法该模型首先通过SE... 目的为解决基于度量学习的遥感影像分类中小样本学习特征空间图像特征分布不明显问题,提出一种适用于小样本模型的遥感影像分类模型SER-GNN(SENet attention residual neural network and graph neural networks)。方法该模型首先通过SER-GNN卷积层(融合基础网络ResNet-12和SENet组成)进行遥感影像图像特征提取,增强模型对关键区域的关注能力;然后将图像信息和类别标签编码嵌入到SER-GNN模型的GNN层;最后以消息传递推理算法的模式计算影像类别之间的隐含关系,构建邻接网络并完成分类任务。结果结果表明,该模型在UC Merced Land-Use数据集、AID遥感数据集、NWPU-RESISC45数据集上,在5-way 1-shot中,精度分别提高1.35%,2.15%,1.3%;在5-way 5-shot中精度分别提高2.15%,5.65%,3.85%。此外,通过迁移学习策略,在NWPU-RESISC45上训练的模型在AID和UC Merced Land-Use数据集上展现出更优的泛化性能。结论综上,本文提出的SER-GNN模型有效融合卷积神经网络与图神经网络的结构优势,在遥感影像小样本分类任务中表现出更高的准确率的同时,在模型迁移上取得了更强的迁移适应能力。该模型在新的学习环境中获得了更好的适应性,为遥感影像智能分类提供了具有潜力的技术路径与方法参考。 展开更多
关键词 影像分类 小样本学习 ResNet-12 图神经网络 节点嵌入
在线阅读 下载PDF
基于Kolmogorov-Arnold网络的节点分类算法 被引量:2
7
作者 袁立宁 冯文刚 刘钊 《计算机科学与探索》 北大核心 2025年第3期645-656,共12页
多数图深度学习模型通过可学习权重加固定激活函数的方式提取图数据的特征信息,采用不同激活函数时对模型性能有较为显著的影响。针对上述问题,提出了一种基于Kolmogorov-Arnold网络(KAN)的全连接神经网络模型G-KAN,无需特定的激活函数... 多数图深度学习模型通过可学习权重加固定激活函数的方式提取图数据的特征信息,采用不同激活函数时对模型性能有较为显著的影响。针对上述问题,提出了一种基于Kolmogorov-Arnold网络(KAN)的全连接神经网络模型G-KAN,无需特定的激活函数和显式的节点信息传递策略,通过KAN动态学习激活函数,并引入节点相似度引导的对比损失隐式提取原始图特征信息。G-KAN通过线性层将图数据映射到特征空间,通过KAN层提取输入数据中的潜在特征,通过线性层和Softmax函数将KAN层的输出映射为节点标签的概率分布,并引入对比损失对KAN层的输出进行优化,推动高相似度节点彼此接近、低相似度节点彼此远离。在节点分类任务中,G-KAN优于当前较为先进的基线模型,特别是在BlogCatalog数据集上,G-KAN的Micro-F1和Macro-F1相较图卷积网络(GCN)提高了50.42和52.84个百分点。在激活函数对比实验中,引入KAN的方法不仅优于采用不同激活函数的变体,对不同数据集的泛化能力也更强。上述实验结果表明,G-KAN采用的可学习激活函数策略能够提高全连接神经网络的表征能力,使生成的低维节点表示具有更高的区分性。 展开更多
关键词 图卷积网络 多层感知机 Kolmogorov-Arnold网络 对比学习 节点分类
在线阅读 下载PDF
双向特征图增强的图卷积网络算法
8
作者 李梦茜 高心丹 李雪 《计算机科学》 北大核心 2025年第7期127-134,共8页
图卷积神经网络算法在图结构数据的处理中起着至关重要的作用。现有图卷积网络的主流模式是基于拉普拉斯矩阵对节点特征进行加权求和,更侧重于对卷积聚合方式进行优化,忽略了图数据自身的先验信息。为充分挖掘图数据背后所蕴涵的丰富属... 图卷积神经网络算法在图结构数据的处理中起着至关重要的作用。现有图卷积网络的主流模式是基于拉普拉斯矩阵对节点特征进行加权求和,更侧重于对卷积聚合方式进行优化,忽略了图数据自身的先验信息。为充分挖掘图数据背后所蕴涵的丰富属性与结构信息,有效降低图数据中的噪音比例,提出双向特征图增强的图卷积网络算法,通过节点度和相似度计算增强图数据的拓扑空间特征和属性空间特征,然后将两种增强的图特征表示同时在拓扑空间和属性空间中传播,并利用注意力机制自适应融合学习到的嵌入。此外,针对深度图卷积神经网络易发生过平滑的问题,提出一种多输入残差结构,将初始残差和高阶邻域残差相结合,以实现模型在任意卷积层对初始特征和高阶邻域特征的均衡提取。在3个公共数据集上进行实验,结果表明该网络比现有网络具有更好的分类性能。 展开更多
关键词 图卷积网络 图注意力网络 图数据增强 特征提取 节点分类
在线阅读 下载PDF
基于偏序关系的多视图多粒度图表示学习框架
9
作者 肖添龙 徐计 王国胤 《智能系统学报》 北大核心 2025年第1期243-254,共12页
图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系... 图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships,MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。 展开更多
关键词 图神经网络 图池化 多粒度 偏序关系 节点分类任务 图表示学习 半监督学习 图嵌入
在线阅读 下载PDF
RCGNN:图注入攻击下的图神经网络鲁棒性认证方法
10
作者 王煜恒 刘强 伍晓洁 《计算机工程与科学》 北大核心 2025年第3期434-447,共14页
近些年来,图神经网络GNN被广泛应用于异常检测、推荐系统和生物医药等领域。尽管GNN在特定任务中表现出优异的性能,但许多研究表明,GNN容易受到对抗性扰动的影响。为了缓解GNN面对对抗样本时暴露出的脆弱性问题,部分研究人员针对图修改... 近些年来,图神经网络GNN被广泛应用于异常检测、推荐系统和生物医药等领域。尽管GNN在特定任务中表现出优异的性能,但许多研究表明,GNN容易受到对抗性扰动的影响。为了缓解GNN面对对抗样本时暴露出的脆弱性问题,部分研究人员针对图修改攻击提出了鲁棒性认证防御技术,旨在提升GNN模型在该场景下抵御恶意扰动的能力。然而,在图注入攻击GIA场景下关于节点分类模型的鲁棒性分析仍未被广泛探索。面对上述挑战,扩展了稀疏感知随机平滑机制并设计了一种GIA场景下基于随机平滑的鲁棒性认证方法RCGNN。为了使得噪声扰动空间符合GIA攻击行为,预注入恶意节点并将扰动限制在恶意节点附近,同时对噪声扰动函数进行了改进,以提升认证比例和扩大最大认证半径。在真实数据集上的对比实验表明,RCGNN能够实现GIA场景下节点分类任务的鲁棒性认证,相较于稀疏感知随机平滑机制在认证比例和最大认证半径方面获得了更佳的认证性能。 展开更多
关键词 图神经网络 节点分类 随机平滑 图注入攻击 鲁棒性认证
在线阅读 下载PDF
基于集成学习的不平衡图节点分类算法
11
作者 赵华健 杨钦程 胡兆龙 《电子科技大学学报》 北大核心 2025年第3期455-463,共9页
图神经网络(GNN)被广泛应用于节点分类。然而,现有研究集中于平衡数据集,但是不平衡数据却普遍存在。传统处理不平衡数据集的方法,如重采样和重加权,往往需要进行较多的预处理或提出新的网络结构,容易引入新的偏差并导致信息丢失。该文... 图神经网络(GNN)被广泛应用于节点分类。然而,现有研究集中于平衡数据集,但是不平衡数据却普遍存在。传统处理不平衡数据集的方法,如重采样和重加权,往往需要进行较多的预处理或提出新的网络结构,容易引入新的偏差并导致信息丢失。该文提出了一种改良的装袋(Bagging)集成学习方法,对不平衡图数据集进行了k折划分,并采用GNN为基础模型对子数据集进行训练得到多个不同的子模型。最后,通过融合不同模型来提升节点的分类精度而不引入过多的预处理。基于不平衡图数据集的实验结果,表明所提出的方法在准确性和鲁棒性上优于基本分类器,此外,还发现分类精度随着k的增加先提高后降低。 展开更多
关键词 图神经网络 节点分类 图网络结构 不平衡图数据集 集成学习
在线阅读 下载PDF
一种融合图数据多元结构和特征的图池化方法
12
作者 王翔 魏玉锌 毛国君 《计算机工程》 北大核心 2025年第1期128-137,共10页
在图神经网络中,图池化是一类用于对图数据进行下采样以提取图表征的重要操作。由于图数据存在较为复杂的网络拓扑结构和高维度的特征信息,因此现有图池化方法在设计过程中未能同时融合图数据的拓扑结构信息和节点的长距离依赖信息,在... 在图神经网络中,图池化是一类用于对图数据进行下采样以提取图表征的重要操作。由于图数据存在较为复杂的网络拓扑结构和高维度的特征信息,因此现有图池化方法在设计过程中未能同时融合图数据的拓扑结构信息和节点的长距离依赖信息,在图池化过程中没有考虑丢弃节点的特征,造成图数据的重要信息损失。为此,提出一种基于多元特征融合的图池化方法来同时捕获图数据的局部拓扑信息、全局拓扑信息以及长距离节点依赖关系,并使用1个聚合模块聚合这些特征信息得到1个新的池化图。为了解决图池化过程中节点特征信息丢失的问题,提出一种新的特征融合方法将丢弃节点的信息以一定比例汇聚到保留节点上。基于该池化方法,构建基于分层池化的图分类模型。在D&D、PROTEINS、NCI1和NCI1094个数据集上的实验结果表明,与最佳基线模型相比,所提模型的分类准确率分别提升了2.97、3.59、0.48和0.24个百分点,能够更有效利用图数据的特征信息、拓扑信息和长距离节点依赖信息,在图分类任务上取得了更好的效果。 展开更多
关键词 图池化 图分类 拓扑信息 长距离节点依赖 特征融合
在线阅读 下载PDF
面向小样本节点分类的图数据增强方法
13
作者 富坤 应世聪 +3 位作者 郑婷婷 屈佳捷 崔静远 李建伟 《计算机应用》 北大核心 2025年第2期392-402,共11页
现实中,图结构数据广泛存在,然而,在实际应用中,这些数据常面临标注数据短缺的难题。图数据的小样本学习(FSL)方法旨在以较少的标注样本实现数据的分类。尽管这些方法在小样本节点分类(FSNC)任务上获得较好的性能,但还存在以下问题:高... 现实中,图结构数据广泛存在,然而,在实际应用中,这些数据常面临标注数据短缺的难题。图数据的小样本学习(FSL)方法旨在以较少的标注样本实现数据的分类。尽管这些方法在小样本节点分类(FSNC)任务上获得较好的性能,但还存在以下问题:高质量的标签数据难获取,参数初始化过程泛化能力不足,未能充分挖掘图中的拓扑结构信息。为解决这些问题,提出一种基于图数据增强的小样本节点分类模型(GDA-FSNC)。GDA-FSNC由4个模块构成:基于结构相似度的图数据预处理模块、参数初始化模块、参数微调模块和自适应伪标签生成模块。在图数据预处理模块中,通过基于结构相似度的邻接矩阵增强方法获取更多的图结构信息;在参数初始化模块中,使用互相教学的数据增强方法使每个模型都能从其他模型学到不同的模式和特征,增强信息的多样性;在自适应伪标签生成模块中,根据不同数据集的特征自动选择合适的伪标签生成技术,以生成高质量的伪标签数据。在7个真实数据集上的实验结果表明,GDA-FSNC的分类准确率超过了Meta-GNN、GPN(Graph Prototypical Network)、IA-FSNC(Information Augmentation for Few-Shot Node Classification)等主流的FSL模型。例如,相较于基线模型IA-FSNC,所提模型的分类准确率在小数据集2-way 1-shot设置下至少提升了0.27个百分点,在大数据集5-way 1-shot设置下至少提升了2.06个百分点。可见,GDA-FSNC在小样本场景下有更好的分类性能和泛化能力。 展开更多
关键词 节点分类 图卷积网络 数据增强 元学习 小样本学习
在线阅读 下载PDF
基于GraphSage节点度重要性聚合的网络节点分类研究 被引量:8
14
作者 邹长宽 田小平 +2 位作者 张晓燕 张雨晴 杜磊 《科学技术与工程》 北大核心 2022年第32期14306-14312,共7页
传统的图嵌入算法及图神经网络模型在对网络节点分类时仅使用了节点本身的属性信息或者特征信息,很少使用节点在网络中的结构信息。如何在图神经网络聚合时引入节点网络结构信息来提升分类准确性也是一个值得深入研究的问题。因此,在Gra... 传统的图嵌入算法及图神经网络模型在对网络节点分类时仅使用了节点本身的属性信息或者特征信息,很少使用节点在网络中的结构信息。如何在图神经网络聚合时引入节点网络结构信息来提升分类准确性也是一个值得深入研究的问题。因此,在GraphSage模型的基础上,根据网络中节点度及节点重要性设计了新的聚合函数并提出了GraphSage-Degree模型。首先,模型根据节点度获得节点在邻域中的重要性,然后再以重要性为依据来聚合节点的特征,使得网络中重要的节点能够尽可能的聚合更多的特征信息,并且在GraphSage-Degree中设置了一个与节点度有关的超参数D,能够通过调节该参数D使得在不同的数据集上达到最佳分类状态。在Cora、Citeseer和Pubmed 3个公开数据集上进行了测试,GraphSage-Degree与其他方法相比,macro-F1的平均提升值分别为8.72%、10.37%和8.29%,在Pubmed上有最大提升值38.84%;micro-F1的平均提升值分别为8.97%、11.16%和6.9%,在Pubmed上有最大提升值38.39%。 展开更多
关键词 图神经网络 graphSage 节点度 节点分类
在线阅读 下载PDF
基于图卷积神经网络的节点分类方法研究综述 被引量:9
15
作者 张丽英 孙海航 +1 位作者 孙玉发 石兵波 《计算机科学》 CSCD 北大核心 2024年第4期95-105,共11页
节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经... 节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经网络的优点,已成为图节点分类方法中最活跃的一个研究分支。对基于图卷积神经网络的节点分类方法的研究进展进行综述,首先介绍图的相关概念、节点分类的任务定义和常用的图数据集;然后探讨两类经典图卷积神经网络——谱域和空间域图卷积神经网络,以及图卷积神经网络在节点分类领域面临的挑战;之后从模型和数据两个视角分析图卷积神经网络在节点分类任务中的研究成果和未解决的问题;最后对基于图卷积神经网络的节点分类研究方向进行展望,并总结全文。 展开更多
关键词 图数据 节点分类 图神经网络 图卷积神经网络
在线阅读 下载PDF
基于双节点-双边图神经网络的茶叶病害分类方法 被引量:2
16
作者 张艳 车迅 +2 位作者 汪芃 汪玉凤 胡根生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期252-262,共11页
传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶... 传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶叶病害分类方法。首先通过两分支卷积神经网络提取RGB茶叶病害特征和灰度茶叶病害特征,两分支均采用ResNet12作为骨干网络,参数独立不共享,两类特征作为图神经网络的两个子节点,以获得不同域样本所包含的病害信息;其次构建相对度量边和相似性边两类边,从而强化节点对相邻节点所含病害特征的聚合能力。最后,经过双节点特征和双边特征更新模块,实现双节点和双边交替更新,提高边特征对节点距离度量的准确性,从而实现训练样本较少条件下对茶叶病害的准确分类。本文方法和小样本学习方法进行了对比实验,结果表明,本文方法获得更高的准确率,在miniImageNet和PlantVillage数据集上5way-1shot的准确率分别达到69.30%和88.42%,5way-5shot准确率分别为82.48%和93.04%。同时在茶叶数据集TeaD-5上5way-1shot和5way-5shot准确率分别达到84.74%和86.34%。 展开更多
关键词 茶叶 病害分类 图神经网络 双节点 相对度量边 相似性边
在线阅读 下载PDF
基于相似网络和联合注意力的图嵌入模型 被引量:1
17
作者 王静红 李昌鑫 +1 位作者 杨家腾 于富强 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第6期36-44,共9页
图注意力网络(graph attention network, GAT)将注意力机制与图神经网络融合,但模型只关注节点的一阶邻域节点,缺乏对高阶相似节点的考虑,同时在计算注意力分数时缺乏对节点结构特征的关注.为此提出一种基于相似网络和联合注意力的图嵌... 图注意力网络(graph attention network, GAT)将注意力机制与图神经网络融合,但模型只关注节点的一阶邻域节点,缺乏对高阶相似节点的考虑,同时在计算注意力分数时缺乏对节点结构特征的关注.为此提出一种基于相似网络和联合注意力的图嵌入模型.首先计算网络中的节点相似性,并将高相似度且未连接的节点对构建新边以形成相似网络.其次,引入结构相关性和内容相关性的概念,分别用于表征节点之间的结构关系和内容特征.通过融合两种相关性得分计算得到联合注意力分数.最后使用联合注意力分数对节点特征加权聚合,得到最终的节点嵌入表示.将本文所提算法在Cora、Citeseer和Pubmed 3个数据集上进行节点分类任务,准确率分别达到85.70%、74.30%、84.10%,与原始图注意力网络模型相比分别提高了2.70%、3.94%和2.60%.可见,所提出的算法可以得到更好的节点嵌入表示. 展开更多
关键词 图嵌入 图注意力网络 节点相似性 相似网络 节点分类
在线阅读 下载PDF
基于图结构增强的图神经网络方法 被引量:1
18
作者 张芳 单万锦 王雯 《天津工业大学学报》 CAS 北大核心 2024年第3期58-65,共8页
针对图卷积网络(GCNs)在面对低同质性的图结构时性能骤降问题,提出了一种新颖的基于图结构增强的图神经网络方法,用于学习改善的图节点表示。首先将节点信息通过消息传播和聚合,得到节点的初始表示;然后计算节点表示的相似性度量,得到... 针对图卷积网络(GCNs)在面对低同质性的图结构时性能骤降问题,提出了一种新颖的基于图结构增强的图神经网络方法,用于学习改善的图节点表示。首先将节点信息通过消息传播和聚合,得到节点的初始表示;然后计算节点表示的相似性度量,得到图的同质结构;最后融合图的原始结构和同质结构进行节点的信息传递得到节点表示用于下游任务。结果表明:在6个公开的数据集上,所提算法在节点分类的多个指标上均优于对比算法,特别是在同质性较低的4个数据集上,所提算法的准确度(ACC)分数分别超过最高基准5.53%、6.87%、3.08%、4.00%,宏平均(F1)值分别超过最高基准5.75%、8.06%、6.46%、5.61%,获得了远高于基准的优越表现,表明所提方法成功改善了图数据的结构,验证了该算法对图结构优化的有效性。 展开更多
关键词 图结构增强 相似性度量 图卷积网络 节点分类
在线阅读 下载PDF
可信的图神经网络节点分类方法 被引量:1
19
作者 刘彦北 马夕然 王雯 《天津工业大学学报》 CAS 北大核心 2024年第1期82-88,共7页
为了研究节点特征表示的不确定性对节点分类的影响,提出一种可信的图神经网络节点分类方法。算法使用径向基函数计算节点间距离,得到各类节点质心后,根据距离分配与未标记节点最近质心的类别标签提高节点分类性能,同时定义未标记节点和... 为了研究节点特征表示的不确定性对节点分类的影响,提出一种可信的图神经网络节点分类方法。算法使用径向基函数计算节点间距离,得到各类节点质心后,根据距离分配与未标记节点最近质心的类别标签提高节点分类性能,同时定义未标记节点和质心之间的距离为模型输出的不确定性,并使用梯度惩罚损失加强输入变化的可检测性,可以有效地检测分布外节点样本。在Cora、Citeseer和Pubmed这3个公开网络数据集上的结果表明:模型在分类任务的AUROC指标分别达到81.5%、76.2%和74.6%,在分布外样本检测任务中AUROC指标分别达到83.6%、72.8%和70.6%,证明了所提算法在提高节点分类性能的同时,可以有效检测分布外的节点样本,提高了节点分类的可信性。 展开更多
关键词 图神经网络 节点分类 分布外检测 不确定性估计 梯度惩罚
在线阅读 下载PDF
基于数据与特征增强的自监督图表示学习方法 被引量:1
20
作者 许云峰 范贺荀 《计算机工程与应用》 CSCD 北大核心 2024年第17期148-157,共10页
图表示学习在处理图数据结构中起着非常重要的作用,但它面临着严重依赖于标记信息的挑战。为了克服这一挑战,提出了一种新的自监督图表示学习框架,通过使用对比学习方法,融合原始图的结构与属性以及频谱的高低频信息,在保留节点信息的... 图表示学习在处理图数据结构中起着非常重要的作用,但它面临着严重依赖于标记信息的挑战。为了克服这一挑战,提出了一种新的自监督图表示学习框架,通过使用对比学习方法,融合原始图的结构与属性以及频谱的高低频信息,在保留节点信息的基础上进行增强。同时,利用残差融合机制和无偏特征增强方法,在保证特征有效性的同时进一步减少增强样本的偏差。此外,在对比部分估计负样本为真的概率,并使用权重来度量负样本的硬度和相似度。通过在3个公开数据集上实验证明,在节点分类的下游任务中表现不仅优于当前最先进的无监督方法,而且还在多数任务中超过了以往的有监督方法。 展开更多
关键词 自监督学习 图对比学习 特征增强 节点分类 图表示学习
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部