The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale tw...A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.展开更多
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An...A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
The passive suspension system of tracked vehicle is designed to get its suspension parameters based on a certain common velocity and a certain road surface roughness. Its performance optimization only exists in a cert...The passive suspension system of tracked vehicle is designed to get its suspension parameters based on a certain common velocity and a certain road surface roughness. Its performance optimization only exists in a certain operating mode without far-ranging adaptability. Holding the damper basic frame form and applying semi-active suspension system based on MR (magnetorheological) damper, the vehicle can keep its optimum efficiency between energy dissipation and vibration reduction in all kinds of operating modes. Theoretical analysis and experiments show that the damping performances provided by this MRF(magnetorheological fluids) vane damper are same as those provided by traditional damper, and the new damper has the better controllability and adaptability.展开更多
考虑到海上浮式风机(floating offshore wind turbine,FOWT)因存在整体晃动导致背景响应强烈,在频域上有时表现为激励频率,且随激励频率的变化而变化,在使用传统调谐质量阻尼器(tuned mass damper,TMD)对其进行振动控制时出现频率失调...考虑到海上浮式风机(floating offshore wind turbine,FOWT)因存在整体晃动导致背景响应强烈,在频域上有时表现为激励频率,且随激励频率的变化而变化,在使用传统调谐质量阻尼器(tuned mass damper,TMD)对其进行振动控制时出现频率失调和效果不佳等现象,该研究设计并提出了一种带碰撞的磁流变弹性体变刚度调谐质量阻尼器(magnetorheological elastomer-pounding tuned mass damper,MRE-PTMD)对FOWT实施半主动控制。在该控制装置中,利用MRE的刚度可调特性,通过半主动控制技术实现阻尼器频率的实时调节,保持对FOWT的最优控制,同时引入限位挡板对MRE材料加以保护并实现碰撞耗能。以驳船型FOWT为例,建立了包含控制装置的17自由度动力方程,对其在风浪联合作用下的减振性能及参数影响进行了研究,并与传统TMD进行了对比。结果表明,所提控制装置能通过对结构响应的实时追踪适时调节阻尼器的控制参数,相比传统TMD有更佳的减振性能和适应性。参数分析表明,增大阻尼器质量比是提升MRE-PTMD工作性能的有效途径,通过对阻尼器质量比及碰撞参数的合理设计可在不过多影响减振效果的情况下实现对MRE的保护及控制装置小型化。展开更多
针对液压阻尼器特性,研制了一种同时满足其动静态性能测试的试验台,解决了该试验台面临的一系列关键技术问题。从节能的角度,采用小泵站大蓄能器组的形式,解决了动静态试验对流量要求差别巨大的矛盾;在回油路上设置蓄能器组解决了大流...针对液压阻尼器特性,研制了一种同时满足其动静态性能测试的试验台,解决了该试验台面临的一系列关键技术问题。从节能的角度,采用小泵站大蓄能器组的形式,解决了动静态试验对流量要求差别巨大的矛盾;在回油路上设置蓄能器组解决了大流量对回油管路和低压元件的冲击问题;采用液压夹紧方式,使得试验空间的调节方便可靠;采用上下位机的控制模式,同时满足了数据采集速度和控制界面友好的要求。该试验台的最大输出动态力为1 000 kN,频率范围为0.01~33 H z。试验表明,该试验台较好地满足了设计要求,完全满足阻尼器的试验需求。展开更多
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.
基金Project(51175265) supported by the National Natural Science Foundation of ChinaProject(CX10B_114Z) supported by Jiangsu College Graduate Research and Innovation Program,China+1 种基金Project(BK2008415) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(Y1110313) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.
基金Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, ChinaProject(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China
文摘A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.
文摘The passive suspension system of tracked vehicle is designed to get its suspension parameters based on a certain common velocity and a certain road surface roughness. Its performance optimization only exists in a certain operating mode without far-ranging adaptability. Holding the damper basic frame form and applying semi-active suspension system based on MR (magnetorheological) damper, the vehicle can keep its optimum efficiency between energy dissipation and vibration reduction in all kinds of operating modes. Theoretical analysis and experiments show that the damping performances provided by this MRF(magnetorheological fluids) vane damper are same as those provided by traditional damper, and the new damper has the better controllability and adaptability.
文摘考虑到海上浮式风机(floating offshore wind turbine,FOWT)因存在整体晃动导致背景响应强烈,在频域上有时表现为激励频率,且随激励频率的变化而变化,在使用传统调谐质量阻尼器(tuned mass damper,TMD)对其进行振动控制时出现频率失调和效果不佳等现象,该研究设计并提出了一种带碰撞的磁流变弹性体变刚度调谐质量阻尼器(magnetorheological elastomer-pounding tuned mass damper,MRE-PTMD)对FOWT实施半主动控制。在该控制装置中,利用MRE的刚度可调特性,通过半主动控制技术实现阻尼器频率的实时调节,保持对FOWT的最优控制,同时引入限位挡板对MRE材料加以保护并实现碰撞耗能。以驳船型FOWT为例,建立了包含控制装置的17自由度动力方程,对其在风浪联合作用下的减振性能及参数影响进行了研究,并与传统TMD进行了对比。结果表明,所提控制装置能通过对结构响应的实时追踪适时调节阻尼器的控制参数,相比传统TMD有更佳的减振性能和适应性。参数分析表明,增大阻尼器质量比是提升MRE-PTMD工作性能的有效途径,通过对阻尼器质量比及碰撞参数的合理设计可在不过多影响减振效果的情况下实现对MRE的保护及控制装置小型化。
文摘针对液压阻尼器特性,研制了一种同时满足其动静态性能测试的试验台,解决了该试验台面临的一系列关键技术问题。从节能的角度,采用小泵站大蓄能器组的形式,解决了动静态试验对流量要求差别巨大的矛盾;在回油路上设置蓄能器组解决了大流量对回油管路和低压元件的冲击问题;采用液压夹紧方式,使得试验空间的调节方便可靠;采用上下位机的控制模式,同时满足了数据采集速度和控制界面友好的要求。该试验台的最大输出动态力为1 000 kN,频率范围为0.01~33 H z。试验表明,该试验台较好地满足了设计要求,完全满足阻尼器的试验需求。