期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于搭配的中文词汇语义相似度计算方法 被引量:13
1
作者 王石 曹存根 +1 位作者 裴亚军 夏飞 《中文信息学报》 CSCD 北大核心 2013年第1期7-14,共8页
词汇间的语义相似度计算在自然语言处理相关的许多应用中有基础作用。该文提出了一种新的计算方法,具有高效实用、准确率较高的特点。该方法从传统的分布相似度假设"相似的词汇出现在相似的上下文中"出发,提出不再采用词汇在... 词汇间的语义相似度计算在自然语言处理相关的许多应用中有基础作用。该文提出了一种新的计算方法,具有高效实用、准确率较高的特点。该方法从传统的分布相似度假设"相似的词汇出现在相似的上下文中"出发,提出不再采用词汇在句子中的邻接词,而是采用词汇在二词名词短语中的搭配词作为其上下文,将更能体现词汇的语义特征,可取得更好的计算结果。在自动构建大规模二词名词短语的基础上,首先基于tf-idf构造直接和间接搭配词向量,然后通过计算搭配词向量间的余弦距离得到词汇间的语义相似度。为了便于与相关方法比较,构建了基于人工评分的中文词汇语义相似度基准测试集,在该测试集中的名、动、形容词中,方法分别得到了0.703、0.509、0.700的相关系数,及100%的覆盖率。 展开更多
关键词 语义相似度 词汇搭配 相似度基准测试集
在线阅读 下载PDF
结合语义改进的K-means短文本聚类算法 被引量:14
2
作者 邱云飞 赵彬 +1 位作者 林明明 王伟 《计算机工程与应用》 CSCD 北大核心 2016年第19期78-83,共6页
针对短文本聚类存在的三个主要挑战,特征关键词的稀疏性、高维空间处理的复杂性和簇的可理解性,提出了一种结合语义改进的K-means短文本聚类算法。该算法通过词语集合表示短文本,缓解了短文本特征关键词的稀疏性问题;通过挖掘短文本集... 针对短文本聚类存在的三个主要挑战,特征关键词的稀疏性、高维空间处理的复杂性和簇的可理解性,提出了一种结合语义改进的K-means短文本聚类算法。该算法通过词语集合表示短文本,缓解了短文本特征关键词的稀疏性问题;通过挖掘短文本集的最大频繁词集获取初始聚类中心,有效克服了K-means聚类算法对初始聚类中心敏感的缺点,解决了簇的理解性问题;通过结合TF-IDF值的语义相似度计算文档之间的相似度,避免了高维空间的运算。实验结果表明,从语义角度出发实现的短文本聚类算法优于传统的短文本聚类算法。 展开更多
关键词 文本挖掘 短文本聚类 K-MEANS算法 最大频繁词集 知网 语义相似度
在线阅读 下载PDF
改进的基于知网词汇语义褒贬倾向性计算 被引量:15
3
作者 杨昱昺 吴贤伟 《计算机工程与应用》 CSCD 北大核心 2009年第21期91-93,108,共4页
词汇语义褒贬倾向性研究是句子褒贬倾向性识别的基础,而句子褒贬倾向性识别又是文本倾向性识别和篇章结构褒贬倾向性识别的基础。以《知网》的词汇语义相似度计算为基础,针对目前采用计算基准词对与词汇相似度的方法识别词汇褒贬倾向性... 词汇语义褒贬倾向性研究是句子褒贬倾向性识别的基础,而句子褒贬倾向性识别又是文本倾向性识别和篇章结构褒贬倾向性识别的基础。以《知网》的词汇语义相似度计算为基础,针对目前采用计算基准词对与词汇相似度的方法识别词汇褒贬倾向性理论,从褒贬基准词和计算公式入手,提出了改进办法。实验证明,在同样基准词对下,准确率得到了很大的提高,达到98.94%,具有实际应用价值。 展开更多
关键词 语义相似度 倾向性识别 知网 褒贬基准词
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部