期刊文献+
共找到484篇文章
< 1 2 25 >
每页显示 20 50 100
Task-Oriented Semantic Communication with Foundation Models
1
作者 Chen Mingkai Liu Minghao +2 位作者 Zhang Zhe Xu Zhiping Wang Lei 《China Communications》 SCIE CSCD 2024年第7期65-77,共13页
In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence... In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence(AI)foundation models provides significant support for efficient and intelligent communication interactions.In this paper,we propose an innovative semantic communication paradigm called task-oriented semantic communication system with foundation models.First,we segment the image by using task prompts based on the segment anything model(SAM)and contrastive language-image pretraining(CLIP).Meanwhile,we adopt Bezier curve to enhance the mask to improve the segmentation accuracy.Second,we have differentiated semantic compression and transmission approaches for segmented content.Third,we fuse different semantic information based on the conditional diffusion model to generate high-quality images that satisfy the users'specific task requirements.Finally,the experimental results show that the proposed system compresses the semantic information effectively and improves the robustness of semantic communication. 展开更多
关键词 diffusion model foundation model joint source-channel coding task-oriented semantic communication
在线阅读 下载PDF
Intellicise Model Transmission for Semantic Communication in Intelligence-Native 6G Networks
2
作者 Wang Yining Han Shujun +4 位作者 Xu Xiaodong Meng Rui Liang Haotai Dong Chen Zhang Ping 《China Communications》 SCIE CSCD 2024年第7期95-112,共18页
To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence... To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence(AI)models that provide abilities of semantic extraction and recovery.Nevertheless,it is not feasible to preload all AI models on resource-constrained terminals.Thus,in-time model transmission becomes a crucial problem.This paper proposes an intellicise model transmission architecture to guarantee the reliable transmission of models for semantic communication.The mathematical relationship between model size and performance is formulated by employing a recognition error function supported with experimental data.We consider the characteristics of wireless channels and derive the closed-form expression of model transmission outage probability(MTOP)over the Rayleigh channel.Besides,we define the effective model accuracy(EMA)to evaluate the model transmission performance of both communication and intelligence.Then we propose a joint model selection and resource allocation(JMSRA)algorithm to maximize the average EMA of all users.Simulation results demonstrate that the average EMA of the JMSRA algorithm outperforms baseline algorithms by about 22%. 展开更多
关键词 edge intelligence(EI) model transmission outage probability and accuracy resource allocation semantic communication
在线阅读 下载PDF
Variational Learned Talking-Head Semantic Coded Transmission System
3
作者 Yue Weijie Si Zhongwei 《China Communications》 SCIE CSCD 2024年第7期37-49,共13页
Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,t... Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close. 展开更多
关键词 semantic communications source-channel coding talking-head transmission variational modeling
在线阅读 下载PDF
Information Conductivity:Universal Performance Measure for Semantic Communications
4
作者 Liang Zijian Niu Kai Zhang Ping 《China Communications》 SCIE CSCD 2024年第7期17-36,共20页
As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure... As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability. 展开更多
关键词 information conductivity information transmission capability semantic communications system model universal performance measure
在线阅读 下载PDF
“SEMANTIC” in a Digital Curation Model 被引量:1
5
作者 Hyewon Lee Soyoung Yoon Ziyoung Park 《Journal of Data and Information Science》 CSCD 2020年第1期81-92,共12页
Purpose:This study attempts to propose an abstract model by gathering concepts that can focus on resource representation and description in a digital curation model and suggest a conceptual model that emphasizes seman... Purpose:This study attempts to propose an abstract model by gathering concepts that can focus on resource representation and description in a digital curation model and suggest a conceptual model that emphasizes semantic enrichment in a digital curation model.Design/methodology/approach:This study conducts a literature review to analyze the preceding curation models,DCC CLM,DCC&U,UC3,and DCN.Findings:The concept of semantic enrichment is expressed in a single word,SEMANTIC in this study.The Semantic Enrichment Model,SEMANTIC has elements,subject,extraction,multi-language,authority,network,thing,identity,and connect.Research limitations:This study does not reflect the actual information environment because it focuses on the concepts of the representation of digital objects.Practical implications:This study presents the main considerations for creating and reinforcing the description and representation of digital objects when building and developing digital curation models in specific institutions.Originality/value:This study summarizes the elements that should be emphasized in the representation of digital objects in terms of information organization. 展开更多
关键词 Digital curation model semantic enrichment semantic model Representation and description of digital objects
在线阅读 下载PDF
Construction method of Chinese sentential semantic structure 被引量:2
6
作者 罗森林 韩磊 +1 位作者 潘丽敏 魏超 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期110-117,共8页
A new method is proposed for constructing the Chinese sentential semantic structure in this paper. The method adopts the features including predicates, relations between predicates and basic arguments, relations betwe... A new method is proposed for constructing the Chinese sentential semantic structure in this paper. The method adopts the features including predicates, relations between predicates and basic arguments, relations between words, and case types to train the models of CRF + + and de- pendency parser. On the basis of the data set in Beijing Forest Studio-Chinese Tagged Corpus ( BFS- CTC), the proposed method obtains precision value of 73.63% in open test. This result shows that the formalized computer processing can construct the sentential semantic structure absolutely. The features of predicates, topic and comment extracted with the method can be applied in Chinese in- formation processing directly for promoting the development of Chinese semantic analysis. The method makes the analysis of sentential semantic analysis based on large scale of data possible. It is a tool for expanding the corpus and has certain theoretical research and practical application value. 展开更多
关键词 sentential semantic structure Chinese sentential semantic model conditional randomfield dependency parse
在线阅读 下载PDF
An Alternative-Service Recommending Algorithm Based on Semantic Similarity 被引量:2
7
作者 Kun Guo Yonghua Li Yueming Lu 《China Communications》 SCIE CSCD 2017年第8期124-136,共13页
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro... With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%. 展开更多
关键词 activity recognition semantic model service recommendation unavailable service
在线阅读 下载PDF
Study on the P2P Cloud Storage Architecture Based on Semantic Hypergraph
8
作者 SONG Ningning LIN Ruijie +2 位作者 AN Xingshuo GONG Chao YAO Zhiyong 《China Communications》 SCIE CSCD 2015年第S2期39-47,共9页
Cloud storage has the characteristics of distributed and virtual, and it makes the ownership rights and management rights of users data separated. The master-slave architecture of cloud storage has a problem of single... Cloud storage has the characteristics of distributed and virtual, and it makes the ownership rights and management rights of users data separated. The master-slave architecture of cloud storage has a problem of single point failure. In this paper, we provide a cloud storage architecture model based on Semantic equivalence. According to semantic matching degree, this architecture divides the nodes into node cluster by creating semantic tree and maintains system routing through semantic hypergraph. Through simulation experiments show that dividing network into semantic can enhance scalability and flexibility of the system, and it can improve the efficiency of network organization and the security of cloud storage system, at the same time, it can also reduce the cloud data storage and the delay of reading time. 展开更多
关键词 CLOUD STORAGE HYPERGRAPH semantic modelLING P2P
在线阅读 下载PDF
A User-Centric Approach to Activity Recognition and Guidance in Semantic Smart Home
9
作者 LI Haitao GUO Kun +1 位作者 LU Yueming LI Yonghua 《China Communications》 SCIE CSCD 2015年第S2期103-113,共11页
Wireless smart home system is to facilitate people's lives and it trend to adopt a more intelligent way to provide services. It is very desirable in the recent SH market for the system to recognize users' beha... Wireless smart home system is to facilitate people's lives and it trend to adopt a more intelligent way to provide services. It is very desirable in the recent SH market for the system to recognize users' behaviors and automatically response the corresponding activities to satisfy users' actual demands. However, activity models in the existing approaches are usually defined separately through knowledge-driven methods. These approaches cause that the activity models can't be matched with the services dynamically. To address the problem, we develop the semantic association model and a novel approach of activity recognition and guidance is presented. In our approach, the smart devices and users' requirements are described by semantic models. When the requirements are detected and understood, smart gateway can provide appropriate services, achieving activity assistance. The semantic association model allows all related elements in smart home connect with each other logically. The approach has been implemented and the results show that the success rate of the approach based on semantic association model is higher than 33% at average as compared to the approach based on predefined models. The proposed approach can effectively help people who are in trouble with learning or remembering in the common life. 展开更多
关键词 Internet of THINGS smart HOME ACTIVITY RECOGNITION ACTIVITY GUIDANCE semantic model
在线阅读 下载PDF
Boosting Unsupervised Monocular Depth Estimation with Auxiliary Semantic Information
10
作者 Hui Ren Nan Gao Jia Li 《China Communications》 SCIE CSCD 2021年第6期228-243,共16页
Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupe... Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation. 展开更多
关键词 unsupervised monocular depth estimation semantic segmentation multi-task model
在线阅读 下载PDF
基于特征融合的复杂场景树种跨域泛化分类模型
11
作者 陈广胜 温林郅 +3 位作者 张文均 李超 于鸣 景维鹏 《林业科学》 北大核心 2025年第4期33-45,共13页
【目的】针对不同区域因气候、土壤等生态因子差异导致的域偏移问题,提出一种基于全局-局部特征融合的单域泛化方法,提升复杂森林场景下无标签树种识别的泛化性能,为跨域树种分类研究提供理论依据和实践支持。【方法】选取德国巴登-符... 【目的】针对不同区域因气候、土壤等生态因子差异导致的域偏移问题,提出一种基于全局-局部特征融合的单域泛化方法,提升复杂森林场景下无标签树种识别的泛化性能,为跨域树种分类研究提供理论依据和实践支持。【方法】选取德国巴登-符腾堡州南部和中国黄山市祁门县西部为源域,德国图林根州中部和中国黄山市祁门县东部为目标域,构建一种全局-局部特征融合网络(HUFNet)模型进行树种分类,HUFNet模型包含基于CNN的编码器层、基于Transformer的解码器层、全局-局部特征融合机制(GLAFE)、特征精炼头(FRH)和边界优化模块(ERV)。模型经源域数据集训练后,在目标域上测试验证其泛化能力,实现复杂场景跨域树种分类。【结果】通过多个源域和目标域数据集的对比验证,HUFNet模型在目标域HainichUAV数据集上对针叶和阔叶树种的分类总体准确率(OA)为75.1%,平均交并比(mIoU)为58.3%,相比基于自注意力机制的分类架构分别提升13.7%与11.7%。在目标域HuangshanEast数据集上,HUFNet模型的OA为71.7%,mIoU为56.8%,相比ViT-R50作为编码器的混合架构,OA提升1.2%。【结论】HUFNet模型的跨域树种分类性能明显提升,不仅保持了高精度的识别能力,而且在目标域上展现出强大的跨域泛化能力,同时大幅降低了模型的时间复杂度和空间复杂度,适用于资源受限的环境。该模型基于全局-局部特征融合的单域泛化方法,为跨域树种分类提供了新的研究思路。 展开更多
关键词 遥感影像 树种分类 单域泛化 语义分割 轻量化模型
在线阅读 下载PDF
RS-SegDif:基于扩散模型的遥感语义分割样本合成方法
12
作者 龚健雅 刘青瑀 +3 位作者 张觅 聂福 李依聪 邵远征 《城市勘测》 2025年第1期1-7,共7页
当前深度学习在遥感领域已经取得了显著的发展,而大规模,高质量标注的训练数据集对深度学习的突破起着至关重要的作用。尽管遥感训练样本量在不断增加,但多样性的遥感语义分割样本仍然缺乏。针对该问题,本文提出了RS-SegDif方法,通过生... 当前深度学习在遥感领域已经取得了显著的发展,而大规模,高质量标注的训练数据集对深度学习的突破起着至关重要的作用。尽管遥感训练样本量在不断增加,但多样性的遥感语义分割样本仍然缺乏。针对该问题,本文提出了RS-SegDif方法,通过生成式扩散模型生成遥感影像来有效扩充遥感语义分割样本多样性,这将改变传统的数据生成过程。本方法首先根据遥感影像的文字提示,通过扩散模型生成了满足真实世界的数据分布多样化的语义标签,然后以语义分割标签为条件,通过扩散模型生成遥感影像的方式,充分地扩充了遥感语义分割样本多样性。此外,为了大幅提升生成样本的多样性,RS-SegDif整合了两个遥感数据生成策略,即通过文本生成标签再生成影像的策略以及直接通过文本和真实标签生成影像的策略。针对下游任务,对比了多种语义分割模型,当使用合成遥感数据进行训练时,本文的合成数据的高质量在下游语义分割任务中提升了模型精度约+3.25 mIoU,有效扩充了遥感样本的多样性。 展开更多
关键词 扩散模型 语义分割 遥感样本生成 深度学习
在线阅读 下载PDF
描写还是解释:由ChatGPT反思语言学的两种目标 被引量:1
13
作者 袁毓林 《语言战略研究》 北大核心 2025年第1期62-74,共13页
本文在现代大语言模型语境下反思语言学研究的两种目标之争:精确描写(语言事实,how)还是科学解释(语言能力,why)?以此为中心,讨论了一系列相关的问题,并考察了ChatGPT能否捕获长距离依存、能否理解句法与语义分离的句子、对语言的科学... 本文在现代大语言模型语境下反思语言学研究的两种目标之争:精确描写(语言事实,how)还是科学解释(语言能力,why)?以此为中心,讨论了一系列相关的问题,并考察了ChatGPT能否捕获长距离依存、能否理解句法与语义分离的句子、对语言的科学解释与精确描写是否对立。得出的结论是:(1)ChatGPT等大模型能够超越马尔可夫过程模型,来捕获语句中不同词语之间的长距离依存关系;能够隐式地学习基本的句法和语义知识,从而理解、识别和生成语义异常的句子。(2)对语言的精确描写和科学解释并不对立,并且前者比后者更加重要。(3)生成语法学的“原则与参数”范式下的范畴语法,对于描写人类自然语言有不可克服的困难。(4)语法学的研究取向应该是语义优先,而不是句法优先。(5)大模型的成功说明:对语言事实的准确描写远比对语言能力的抽象解释更为基本。 展开更多
关键词 ChatGPT 语言模型 描写/解释 语言事实/语言能力 语义优先/句法优先
在线阅读 下载PDF
面向区块链漏洞知识库的大模型增强知识图谱问答模型
14
作者 解飞 宋建华 +2 位作者 姜丽 张龑 何帅 《现代电子技术》 北大核心 2025年第2期137-142,共6页
大语言模型(LLM)在专业领域特别是区块链漏洞领域应用时存在局限性,如专业术语噪声干扰和细粒度信息过重导致理解不足。为此,构建一种面向区块链漏洞知识库的增强型知识图谱问答模型(LMBK_KG)。通过整合大模型和知识图谱来增强知识表示... 大语言模型(LLM)在专业领域特别是区块链漏洞领域应用时存在局限性,如专业术语噪声干扰和细粒度信息过重导致理解不足。为此,构建一种面向区块链漏洞知识库的增强型知识图谱问答模型(LMBK_KG)。通过整合大模型和知识图谱来增强知识表示和理解能力,同时利用多粒度语义信息进行专业问题的过滤和精准匹配。研究方法包括使用集成的多粒度语义信息和知识图谱来过滤专业术语噪声,以及采用大模型生成的回答与专业知识图谱进行结构化匹配和验证,以提高模型的鲁棒性和安全性。实验结果表明,所提出的模型在区块链漏洞领域问答的准确率比单独使用大模型提高26%。 展开更多
关键词 大语言模型 知识图谱 问答模型 多粒度语义信息 区块链 漏洞信息 文本表征
在线阅读 下载PDF
6G内生智能无线大模型:安全、隐私、伦理和高能效
15
作者 李心怡 杨照辉 +3 位作者 黄崇文 陈晓明 许威 张朝阳 《移动通信》 2025年第1期59-66,共8页
鉴于大模型(或基础模型)越来越受到关注,例如生成式预训练模型(GPT)及其在各种计算任务中的应用,介绍了将大模型应用到无线通信领域产生的无线大模型。首先给出无线大模型的基本概念,并从安全、隐私、伦理和高能效四个方面对研究现状展... 鉴于大模型(或基础模型)越来越受到关注,例如生成式预训练模型(GPT)及其在各种计算任务中的应用,介绍了将大模型应用到无线通信领域产生的无线大模型。首先给出无线大模型的基本概念,并从安全、隐私、伦理和高能效四个方面对研究现状展开介绍。在安全方面,分析了投毒攻击、后门攻击等对无线大模型的威胁;针对隐私问题,介绍了差分隐私、联邦学习等技术在保护用户数据隐私中的应用;在高能效设计中,概述了模型压缩、数据选择等优化策略,以在性能与能耗间实现平衡。最后面向6G无线网络,给出了内生智能无线大模型的架构,强调其在云-边协同计算、语义通信和跨领域整合中的应用潜力。 展开更多
关键词 6G AI大模型 联邦学习 语义通信
在线阅读 下载PDF
基于卫星遥感影像的茶园精准识别研究
16
作者 李冬雪 李峰 +2 位作者 赵梦洁 丁兆堂 马青平 《山东农业科学》 北大核心 2025年第4期136-145,共10页
鉴于茶园在卫星遥感图像中展现出复杂多变的纹理特征以及空间分布特性,在进行茶园识别时传统的识别手段难以有效应对这一挑战,本研究拟通过卫星遥感图像结合高精度语义分割技术实现茶园的精准识别。首先,利用日照市卫星图像,使用Labelm... 鉴于茶园在卫星遥感图像中展现出复杂多变的纹理特征以及空间分布特性,在进行茶园识别时传统的识别手段难以有效应对这一挑战,本研究拟通过卫星遥感图像结合高精度语义分割技术实现茶园的精准识别。首先,利用日照市卫星图像,使用Labelme工具对茶园纹理信息进行精确标注,构建了茶园遥感图像数据集;基于该数据集,利用数据增强技术训练了Vgg-unet、Resnet50-unet和Segformer_b2等7个语义分割模型用于茶园精准识别。结果表明,7个语义分割模型中,Segformer_b2模型性能最好,茶园遥感图像分割准确率达91.29%,召回率91.09%,平均交并比(mIoU)84.45%,F1分数91.20%。为进一步提高Segformer_b2模型在茶园遥感图像识别时的性能,引入了MCA(Multi-head Context Attention)注意力机制,并融合了条形卷积(Strided Convolution)以增强模型对茶园关键纹理特征的捕获能力和对图像局部细节的感知和处理能力。改进后的Segformer-b2模型的茶园遥感图像分割性能明显提升,其中准确率提升至91.31%,召回率提升至92.97%,mIoU提升至85.87%,F1分数提升至92.12%,可实现茶园遥感图像的高精度和高效率识别。本研究结果不仅可为未来茶园精准识别和管理提供有力支持,同时也展示了卫星遥感技术在农业领域的应用潜力。 展开更多
关键词 卫星遥感影像 茶园识别 语义分割模型
在线阅读 下载PDF
面向6G的无线信道语义特征及建模
17
作者 张正宇 何睿斯 +4 位作者 杨汨 张雪剑 戚子羿 元媛 艾渤 《电子学报》 北大核心 2025年第1期14-23,共10页
随着移动通信技术的发展演进,6G(6th-Generation)网络作为新一代智能化数字信息基础设施,将不再仅聚焦信号的传输和复现,更需要基于电磁传播过程实现对周围环境的高效感知和理解,从而获取信道语义知识,协助智能通信体的预测、决策、波... 随着移动通信技术的发展演进,6G(6th-Generation)网络作为新一代智能化数字信息基础设施,将不再仅聚焦信号的传输和复现,更需要基于电磁传播过程实现对周围环境的高效感知和理解,从而获取信道语义知识,协助智能通信体的预测、决策、波束成形等.因此,相较于传统信道而言,赋予无线信道模型对物理环境的语义理解、重构、表达能力,已成为智能无线信道模型的重要特征.本文提出了一种无线信道语义的分析和建模方法,将信道语义定义为状态语义、行为语义和事件语义3种层级,分别对应信道瞬态多径、信道时变轨迹和信道拓扑结构.此外,基于车载通感一体化(Integrated Sensing And Communication,ISAC)信道测量系统,开展了28 GHz下面向信道语义表征的无线信道测量,基于实测数据对信道语义进行解构、标识、建模,重点分析了3种不同语义下的信道多径分布特性,完成了语义导向的信道生成,结果表明信道语义模型能够在生成较准确信道的同时,表达更丰富的语义信息.本文工作是在语义层面上探索智能信道建模的新方法,通过深入挖掘无线信道的内在语义特征,促进通信系统在理解和认知环境方面的能力,从而提高通信效率和质量. 展开更多
关键词 6G 无线信道建模 信道语义 通信感知一体化 车载信道测量
在线阅读 下载PDF
基于上下文学习和语义检索增强的零样本立场检测方法
18
作者 卢银鹏 郭凯威 +2 位作者 卢记仓 周刚 祝涛杰 《信息工程大学学报》 2025年第2期196-202,共7页
针对传统零样本立场检测方法需要依赖大量标注数据对模型微调的问题,提出一种基于上下文学习与语义检索增强的方法,以在不修改模型参数的条件下,提高大模型对未见对象的立场推理能力。通过语义相似度检索,从已有标注数据中筛选与待测文... 针对传统零样本立场检测方法需要依赖大量标注数据对模型微调的问题,提出一种基于上下文学习与语义检索增强的方法,以在不修改模型参数的条件下,提高大模型对未见对象的立场推理能力。通过语义相似度检索,从已有标注数据中筛选与待测文本相关的样例,并基于大模型的上下文学习范式,使用任务描述把相关样例和待测文本格式化为输入提示,以驱动大模型在更丰富的上下文语境下进行立场分类。实验结果表明,该方法在原始基础上提升了Flan-T5模型的零样本立场检测性能,并在SEM16数据集的细粒度零样本立场检测中显著优于原始模型。通过应用该方法,可以深化大语言模型对任务的了解,并激励模型参考相关样例中的关联知识以理解待测文本,从而更准确地推理关于未见对象的立场。 展开更多
关键词 零样本立场检测 上下文学习 语义检索 大语言模型
在线阅读 下载PDF
装备体系设计与仿真的异构资源统一建模研究
19
作者 陈奕帆 张舒 +2 位作者 董晓明 郭梓芊 田思思 《舰船电子工程》 2025年第1期28-32,共5页
随着信息技术的发展及其在军事领域的广泛应用,现代战争是体系与体系的对抗,体系设计与仿真一体化研究贯穿于武器装备系统研制的全寿命周期,依托模型进行仿真与分析是支撑体系设计与仿真的有效手段。针对模型资源异构、集中管理难的问题... 随着信息技术的发展及其在军事领域的广泛应用,现代战争是体系与体系的对抗,体系设计与仿真一体化研究贯穿于武器装备系统研制的全寿命周期,依托模型进行仿真与分析是支撑体系设计与仿真的有效手段。针对模型资源异构、集中管理难的问题,研究提出面向装备体系设计与仿真的异构模型资源统一描述建模框架,实现模型知识重用共享。在挖掘相关知识概念、关联属性、逻辑约束的基础上,采用语义网本体语言实现异构模型资源的统一语义表达,并借助语义网规则语言建立规则挖掘隐含信息优化构建的异构统一描述模型。最后,基于构建的统一描述模型设计并开发应用系统,证明了模型的有效性和实用性。 展开更多
关键词 装备体系设计与仿真 异构模型资源 语义描述 统一建模
在线阅读 下载PDF
字段语义推断模型的二进制协议语义推理方法
20
作者 董姝岐 黄辑贤 +1 位作者 粘镇泓 井靖 《信息工程大学学报》 2025年第2期238-244,共7页
针对二进制协议逆向工程中字段语义推断准确性低且泛化能力弱的问题,提出一种基于softmax分类模型的字段语义推断模型(FSISC)的自动推断方法。首先,将收集到的协议数据,根据IP地址、端口号进行会话分组;其次,针对已知和未知协议字段本... 针对二进制协议逆向工程中字段语义推断准确性低且泛化能力弱的问题,提出一种基于softmax分类模型的字段语义推断模型(FSISC)的自动推断方法。首先,将收集到的协议数据,根据IP地址、端口号进行会话分组;其次,针对已知和未知协议字段本身、字段列上下文以及多序列行上下文3类特征,采用3种门控循环单元(GRU)进行特征提取;再次,将已知协议字段语义描述转换为嵌入向量,计算向量之间的余弦相似度,并根据字段描述的语义相似度使用k-means++算法进行聚类;最后,利用softmax分类模型对提取的特征和聚合后的语义类别进行类别映射,实现未知协议的自动化语义推断。实验结果显示,所提方法可有效提升对未知协议的泛化能力,实现4种协议的语义推断,与二进制协议逆向工程的自动字段语义推理方法(FSIBP)相比,语义推理准确率有所提升。 展开更多
关键词 二进制协议逆向工程 深度学习 softmax分类模型 语义推断 门控循环单元
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部