期刊文献+
共找到314篇文章
< 1 2 16 >
每页显示 20 50 100
Graph Transformer技术与研究进展:从基础理论到前沿应用 被引量:1
1
作者 游浩 丁苍峰 +2 位作者 马乐荣 延照耀 曹璐 《计算机应用研究》 北大核心 2025年第4期975-986,共12页
图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系... 图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系和精确编码图的拓扑结构,Graph Transformer在节点分类、链接预测和图生成等任务中展现出卓越的性能和准确性。通过引入自注意力机制,Graph Transformer能够有效捕捉节点和边的局部及全局信息,显著提升模型效率和性能。深入探讨Graph Transformer模型,涵盖其发展背景、基本原理和详细结构,并从注意力机制、模块架构和复杂图处理能力(包括超图、动态图)三个角度进行细分分析。全面介绍Graph Transformer的应用现状和未来发展趋势,并探讨其存在的问题和挑战,提出可能的改进方法和思路,以推动该领域的研究和应用进一步发展。 展开更多
关键词 图神经网络 graph Transformer 图表示学习 节点分类
在线阅读 下载PDF
Graph Transformers研究进展综述 被引量:2
2
作者 周诚辰 于千城 +2 位作者 张丽丝 胡智勇 赵明智 《计算机工程与应用》 CSCD 北大核心 2024年第14期37-49,共13页
随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习... 随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习到更好的特征表示。根据对近年来GTs相关文献的研究,将现有的模型架构分为两类:第一类通过绝对编码和相对编码向Transformers中加入图的位置和结构信息,以增强Transformers对图结构数据的理解和处理能力;第二类根据不同的方式(串行、交替、并行)将GNN与Transformers进行结合,以充分利用两者的优势。介绍了GTs在信息安全、药物发现和知识图谱等领域的应用,对比总结了不同用途的模型及其优缺点。最后,从可扩展性、复杂图、更好的结合方式等方面分析了GTs未来研究面临的挑战。 展开更多
关键词 graph Transformers(GTs) 图神经网络 图表示学习 异构图
在线阅读 下载PDF
基于Graph Transformer的半监督异配图表示学习模型
3
作者 黎施彬 龚俊 汤圣君 《计算机应用》 CSCD 北大核心 2024年第6期1816-1823,共8页
现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半... 现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半监督异配图表示学习模型HPGT(HeteroPhilic Graph Transformer)。首先,使用度连接概率矩阵采样节点的路径邻域,再通过自注意力机制自适应地聚合路径上的节点异配连接模式,编码得到节点的结构信息,用节点的原始属性信息和结构信息构建Transformer层的自注意力模块;其次,将每个节点自身的隐层表示与它的邻域节点的隐层表示分离更新以避免节点通过自注意力模块聚合过量的自身信息,再把每个节点表示与它的邻域表示连接,得到单个Transformer层的输出,另外,将所有的Transformer层的输出跳连到最终的节点隐层表示以防止中间层信息丢失;最后,使用线性层和Softmax层将节点的隐层表示映射到节点的预测标签。实验结果表明,与无结构编码(SE)的模型相比,基于度连接概率的SE能为Transformer层的自注意力模块提供有效的偏差信息,HPGT平均准确率提升0.99%~11.98%;与对比模型相比,在异配数据集(Texas、Cornell、Wisconsin和Actor)上,模型节点分类准确率提升0.21%~1.69%,在同配数据集(Cora、CiteSeer和PubMed)上,节点分类准确率分别达到了0.8379、0.7467和0.8862。以上结果验证了HPGT具有较强的异配图表示学习能力,尤其适用于强异配图节点分类任务。 展开更多
关键词 图卷积网络 异配图 图表示学习 graph Transformer 节点分类
在线阅读 下载PDF
基于多视图表示学习的语义感知异质图注意力网络
4
作者 王静红 吴芝冰 +1 位作者 王熙照 李昊康 《计算机科学》 北大核心 2025年第6期167-178,共12页
近年来,图神经网络因能够高效处理异质图中的复杂结构和丰富语义信息而受到了广泛的关注。学习异质图的低维节点嵌入,同时为节点分类、节点聚类等下游任务保留异质结构和语义,是一个关键且具有挑战性的问题。现有研究主要基于元路径来... 近年来,图神经网络因能够高效处理异质图中的复杂结构和丰富语义信息而受到了广泛的关注。学习异质图的低维节点嵌入,同时为节点分类、节点聚类等下游任务保留异质结构和语义,是一个关键且具有挑战性的问题。现有研究主要基于元路径来设计模型,但这种方法至少存在两方面的局限性:1)合适元路径的选择通常需要专家知识或额外的标注信息;2)该方法限制了模型按预定义的模式学习,从而难以充分捕获网络的复杂性。针对这些问题,提出了一种多视图和语义感知的异质图注意力网络(Multi-view and Semantic-aware Heterogeneous Graph Attention Network,MS-HGANN)。该网络无需人工设计元路径,即可融合节点和关系中的丰富语义信息。MS-HGANN主要包括3个部分:特征映射、二阶特定视图自我图融合和语义感知。特征映射将特征映射到统一的节点特征空间;二阶特定视图自我图融合设计了特定关系的编码器和节点注意力学习节点在局部结构上的表示;语义感知设计了两种相互协调的注意力机制来评估节点和关系的重要性,从而得到最终的节点表示。在3个公开数据集上进行实验,结果表明,所提模型在节点分类和聚类任务上达到了先进水平。 展开更多
关键词 图神经网络 异质图 图表示学习 异质图嵌入 异质网络
在线阅读 下载PDF
面向有向图的特征提取与表征学习研究
5
作者 谭郁松 张钰森 蹇松雷 《计算机工程与应用》 北大核心 2025年第3期234-241,共8页
图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然... 图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然而,现有方法在有效提取有向图的方向信息方面仍然存在挑战,主要依赖于节点的局部信息进行特征提取,难以充分利用有向边蕴含的方向信息。为解决这一问题,提出了一种名为变分有向图自编码器(variational directed graph autoencoder,VDGAE)的无监督表示学习方法。VDGAE通过关联矩阵来建模节点与边之间的关联关系,通过计算节点与边之间的亲和力,来重构输入有向图,从而实现无监督表征学习。基于此,VDGAE能够同时为输入有向图学习节点与边的表征,充分捕获有向图的结构信息和方向信息并嵌入至节点与边的表征向量中,使得有向图能够被更准确地表征。实验结果表明,相较于11个基准方法,VDGAE在5个数据集上节点分类任务均优于基准方法,提升了11.96%的预测精度,充分验证了其有效性。 展开更多
关键词 有向图 表征学习 关联矩阵 图神经网络 变分自编码器
在线阅读 下载PDF
RESCAL-DLP:融合动态学习二元组的图谱嵌入模型
6
作者 冯勇 闫寒 +2 位作者 徐红艳 徐涵琪 贾永鑫 《中文信息学报》 北大核心 2025年第7期17-26,共10页
知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体... 知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体关系对,当前研究较少考虑利用二元组潜在的语义信息来提升嵌入的效果。为此,该文提出了一种融合动态学习二元组的图谱嵌入模型(RESCAL-DLP)。首先,使用正负实例构建策略进行数据扩充,使数据集包含更丰富的二元组的特征信息;其次,通过对比学习二元组的语义相似度来加强模型的学习能力,提升嵌入效果;最后,动态调整二元组学习权重进行模型训练。在两个公开标准数据集WN18RR、FB15K-237上进行链接预测实验以评估所提模型的效果。实验结果表明,所提模型相较于当前主流模型在各项指标上均有一定的提升,并在最小化计算资源和模型训练时间的前提下,取得了令人满意的结果。 展开更多
关键词 知识图谱 嵌入表示 数据扩充 二元组 对比学习
在线阅读 下载PDF
基于测井曲线异构特征多视重采样的元学习岩性识别方法
7
作者 曹志民 刘鹏程 +1 位作者 韩建 郝乐川 《石油物探》 北大核心 2025年第3期575-586,共12页
岩性识别是测井解译工作中的基础性及关键性工作之一。然而,由于不同储层性质的复杂性,井间岩性分布和测井响应规律不可避免地存在一定的不一致性,直接影响了井间岩性识别的鲁棒性。针对这一问题,提出了几种异构数据的表示方法,以揭示... 岩性识别是测井解译工作中的基础性及关键性工作之一。然而,由于不同储层性质的复杂性,井间岩性分布和测井响应规律不可避免地存在一定的不一致性,直接影响了井间岩性识别的鲁棒性。针对这一问题,提出了几种异构数据的表示方法,以揭示局部储层描述的不变性。具体来说,首先在测井数据的纵向和横向采用图来表示局部拓扑信息;然后,提取了结构张量(ST)、局部二值模式(LBP)和Hu不变矩(Hu)3种不变特征,用于鲁棒地表示测井数据局部结构信息;最后,用多视重采样策略解决原始数据域中测井曲线的取值分布不平衡和岩性重叠问题以及采用元学习方法对异构特征与目标岩性信息间的非线性关系进行建模。利用大庆油田齐家凹陷工区多口实际测井数据进行了实验,实验结果表明,所提出的不变性特征支持的异构特征多重采样元学习岩性识别方法的井间岩性识别准确率达到86%以上,体现了较强的解决井间测井曲线取值及岩性分布不一致和岩性数据不平衡问题的能力。 展开更多
关键词 测井 岩性识别 储层表征 图表示 不变特征 元学习
在线阅读 下载PDF
联合不相关回归和潜在表示的无监督特征选择
8
作者 刘威 朱乙鑫 +2 位作者 白润才 高琪 李晓红 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第4期495-504,共10页
针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for ... 针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for unsupervised feature selection,URLUFS)。该方法将非负矩阵分解作用于广义不相关回归模型的投影矩阵,使投影矩阵实现非线性的维数约简并获得特征选择矩阵。在特征选择矩阵的基础上,引入自适应图学习来进一步挖掘数据的局部流形结构,并对特征选择矩阵施加范数约束以保持稀疏性。利用潜在表示对数据样本间的相互关系进行学习,引导回归模型中的伪标签矩阵,从而选择出更具有判别性的特征。在8个公开的数据集上进行了数值对比实验,实验结果表明:基于广义不相关回归和潜在表示学习的无监督特征选择算法明显优于其他8种无监督特征选择算法。 展开更多
关键词 无监督特征选择 广义不相关回归 非负矩阵分解 潜在表示学习 自适应图学习
在线阅读 下载PDF
基于去噪图自编码器的无监督社交媒体文本摘要
9
作者 贺瑞芳 赵堂龙 刘焕宇 《软件学报》 北大核心 2025年第5期2130-2150,共21页
社交媒体文本摘要旨在为面向特定话题的大规模社交媒体短文本(称为帖子)产生简明扼要的摘要描述.考虑帖子表达内容短小、非正式等特点,传统方法面临特征稀疏与信息不足的挑战.近期研究利用帖子间的社交关系学习更好的帖子表示并去除冗... 社交媒体文本摘要旨在为面向特定话题的大规模社交媒体短文本(称为帖子)产生简明扼要的摘要描述.考虑帖子表达内容短小、非正式等特点,传统方法面临特征稀疏与信息不足的挑战.近期研究利用帖子间的社交关系学习更好的帖子表示并去除冗余信息,但其忽略了真实社交媒体情景中存在的不可靠噪声关系,使得模型会误导帖子的重要性与多样性判断.因此,提出一种无监督模型DSNSum,其通过去除社交网络中的噪声关系来改善摘要性能.首先,对真实社交关系网络中的噪声关系进行了统计验证;其次,根据社会学理论设计两个噪声函数,并构建一种去噪图自编码器(denoising graph auto-encoder,DGAE),以降低噪声关系的影响,并学习融合可信社交关系的帖子表示;最终,通过稀疏重构框架选择保持覆盖性、重要性及多样性的帖子构成一定长度的摘要.在两个真实社交媒体(Twitter与新浪微博)共计22个话题上的实验结果证明了所提模型的有效性,也为后续相关领域的研究提供了新的思路. 展开更多
关键词 社交媒体文本摘要 图表示学习 图神经网络 去噪自编码器
在线阅读 下载PDF
知识图谱嵌入研究进展综述 被引量:6
10
作者 马恒志 钱育蓉 +3 位作者 冷洪勇 吴海鹏 陶文彬 张依杨 《计算机工程》 北大核心 2025年第2期18-34,共17页
随着大数据和人工智能技术的不断发展,知识图谱应用越来越广泛,知识图谱嵌入技术也得到了飞速发展。知识图谱嵌入通过在低维矢量空间中实现结构化知识表示来提高知识表示和推理效率。对知识图谱嵌入技术进行全面概述,包括其基本概念、... 随着大数据和人工智能技术的不断发展,知识图谱应用越来越广泛,知识图谱嵌入技术也得到了飞速发展。知识图谱嵌入通过在低维矢量空间中实现结构化知识表示来提高知识表示和推理效率。对知识图谱嵌入技术进行全面概述,包括其基本概念、模型类别、评价指标以及应用前景。首先介绍了知识图谱嵌入的基本概念及背景,将知识图谱嵌入分为基于翻译机制的嵌入模型、基于语义匹配机制的嵌入模型、基于神经网络的嵌入模型和基于附加信息的嵌入模型4个主要类别,并对相关模型的核心思想、评分函数、优缺点、应用场景进行细致梳理;然后总结了知识图谱嵌入的常见数据集和评价指标,以及链接预测和三元组分类等相关应用与实验结果,同时介绍了问答系统、推荐系统等下游任务;最后对知识图谱嵌入技术进行回顾总结,概述了当前知识图谱嵌入技术存在的局限性和主要问题,探讨了未来知识图谱嵌入领域存在的机遇和挑战以及具有潜力的研究方向,并对研究前景进行展望。 展开更多
关键词 知识图谱 知识图谱嵌入 知识图谱表示学习 链接预测 三元组分类
在线阅读 下载PDF
一种基于图热核扩散卷积的网络入侵检测方法 被引量:1
11
作者 景永俊 王浩 +1 位作者 邵堃 王晓峰 《计算机工程与科学》 北大核心 2025年第3期459-471,共13页
网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵... 网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵检测方法,该方法在流量统计特征的基础上,以源IP和目标IP地址为节点,以它们之间的交互关系为边,构建入侵检测主机交互图。通过融合网络流量统计特征与潜在的图结构特征,该方法利用图热核扩散传播机制,聚合丰富的邻域信息以学习节点的特征表示,这些节点表示能够使得下游的入侵检测任务更准确地识别异常节点和恶意连接,提升入侵检测的性能。在CIC-IDS-2017和CIC-IDS-20182个数据集上进行的实验结果表明,该方法能够有效捕获网络流量数据中的复杂拓扑结构和节点之间的关系特征,仅通过少量的流量特征和标签信息就能够学习节点的低维向量表示。此外,通过对节点表示的聚类分析和可视化,能够揭示攻击节点在网络中的社区结构和连接特征,这为新型或变种攻击的预防提供了参考。 展开更多
关键词 网络入侵检测 图热核扩散 图表示学习 图神经网络
在线阅读 下载PDF
面向图神经网络的节点重要性排序研究进展 被引量:2
12
作者 曹璐 丁苍峰 +3 位作者 马乐荣 延照耀 游浩 洪安琪 《计算机科学与探索》 北大核心 2025年第4期877-900,共24页
节点重要性排序作为一项关键的图数据分析任务,对于识别和排序图中的重要节点至关重要。图神经网络(GNN)作为一种利用深度学习直接对图结构数据进行学习的框架,能够充分学习图结构数据中的节点和边的内在规律及更深层次的语义特征。在... 节点重要性排序作为一项关键的图数据分析任务,对于识别和排序图中的重要节点至关重要。图神经网络(GNN)作为一种利用深度学习直接对图结构数据进行学习的框架,能够充分学习图结构数据中的节点和边的内在规律及更深层次的语义特征。在节点重要性排序任务中,GNN能够充分利用图结构信息和节点特征进行节点重要性的评估。相比于传统的节点排序方法,GNN可以更好地处理图结构数据的多样性和复杂性,捕捉节点间的复杂关联和语义信息,并自动学习节点特征表示,减少手工特征工程的偏差,提升节点重要性排序任务的准确性。因此,基于图神经网络的方法已成为节点重要性研究的主流方向。对近年来图神经网络的节点排序方法进行分类和综述。梳理了节点排序、图神经网络及经典节点重要性度量指标的核心概念。全面总结了基于图神经网络的节点重要性方法的最新进展,并根据基础图神经网络及其衍生的变体,将节点重要性排序方法分为基础图神经网络、图卷积神经网络、图注意力网络和图自编码器四类。同时,分析这些方法在社交网络、交通网络和知识网络等下游任务中的性能表现。对现有研究进行全面总结,分析现有方法的时间复杂度、优点、局限性和性能,并根据现有研究的不足讨论未来的研究方向。 展开更多
关键词 节点重要性 节点排序 图神经网络 表示学习
在线阅读 下载PDF
基于互信息自适应的多模态实体对齐方法 被引量:1
13
作者 高永杰 党建武 +1 位作者 张希权 郑爱国 《计算机应用研究》 北大核心 2025年第1期106-110,共5页
多模态实体对齐是知识融合过程中的关键一步,但异构的多模态知识图谱拥有较大的结构差异性,并且其多模态信息存在不完全性,利用当前的多模态实体对齐方法无法取得较好的对齐效果。针对上述问题,提出了基于互信息自适应的多模态实体对齐... 多模态实体对齐是知识融合过程中的关键一步,但异构的多模态知识图谱拥有较大的结构差异性,并且其多模态信息存在不完全性,利用当前的多模态实体对齐方法无法取得较好的对齐效果。针对上述问题,提出了基于互信息自适应的多模态实体对齐方法。一方面通过设计自适应融合机制来减小模态差异以及依据模态信息的贡献程度动态分配权重,另一方面引入互信息作为附加特征来强化实体的特征表示,最后利用实体相似度计算来进行实体对齐。实验表明,在5个通用的数据集上,MAMEA相较于当前基线模型,指标hits@1最大可提升1.8%,最小可提升1.4%,指标MRR最大可提升1.4%,最小可提升0.8%,证明了该模型可有效地提升多模态实体对齐的效果。 展开更多
关键词 多模态知识图谱 实体对齐 自适应特征融合 对比表示学习 互信息
在线阅读 下载PDF
GHPN:面向半监督小样本节点分类的图超球面原型网络 被引量:1
14
作者 徐祖豪 陈鑫龙 +2 位作者 李进 黄益颂 傅仰耿 《小型微型计算机系统》 北大核心 2025年第3期542-551,共10页
图神经网络已经成功应用于各种与图相关的任务中.以有监督的方式训练一个图神经网络需要大量标签,而现实世界中受到成本制约难以获取大量标签,因此在小样本学习或半监督学习场景的标签就更为稀少.为了克服这个问题,许多方法通过标签传... 图神经网络已经成功应用于各种与图相关的任务中.以有监督的方式训练一个图神经网络需要大量标签,而现实世界中受到成本制约难以获取大量标签,因此在小样本学习或半监督学习场景的标签就更为稀少.为了克服这个问题,许多方法通过标签传播的方法来估计标签,但通常会受到图上连接性和同质性假设的限制,容易生成带有噪声的伪标签.为了解决这些限制,本文提出了一个名为图超球面原型网络的新方法GHPN,专注于半监督小样本节点分类.为了减轻图结构对预测结果的影响,GHPN在超球面表示空间中建模类别表示,通过类级别表示在语义空间中传播标签信息.此外,为了利用未标记节点的监督信息,本文设计了一个基于原型网络预测结果的负学习框架,用于补充监督信号,调整各类别原型之间的距离.在5个真实世界的数据集上进行的实验表明,该方法与10个最先进的方法相比能够有效提高性能,在4个数据集上能取得平均排名最佳结果. 展开更多
关键词 半监督学习 图表示学习 小样本学习 原型网络 负学习
在线阅读 下载PDF
TiKG-30K:基于表示学习的藏语知识图谱数据集
15
作者 庄文浩 李毅杰 孙媛 《中文信息学报》 北大核心 2025年第5期31-40,共10页
知识图谱的表示学习通过将实体和关系映射至低维向量空间,捕捉丰富的语义信息,支撑信息检索、智能问答及知识推理等应用。该文提出了一个公开的藏语知识图谱数据集TiKG-30K,包含146679个三元组、30986个实体和641种关系,旨在推动低资源... 知识图谱的表示学习通过将实体和关系映射至低维向量空间,捕捉丰富的语义信息,支撑信息检索、智能问答及知识推理等应用。该文提出了一个公开的藏语知识图谱数据集TiKG-30K,包含146679个三元组、30986个实体和641种关系,旨在推动低资源语言的知识图谱表示学习和研究。针对藏语知识图谱数据量少、数据稀疏的问题,该文采用跨语言近义词检索、合并同义实体和关系、修正错误三元组等技术,对数据集进行了多层优化。在TiKG-30K上应用多种经典表示学习模型进行的实验结果显示,该数据集的性能可与英文数据集FB15k-237、WN18RR相媲美。为支持藏语知识图谱的研究和应用,该文将TiKG-30K数据集公开:https://tikg-30k.cmli-nlp.com/。 展开更多
关键词 藏语知识图谱 表示学习 知识图谱嵌入 链接预测
在线阅读 下载PDF
面向捆绑推荐的解耦图对比学习
16
作者 张尧 王绍卿 +1 位作者 吴瑕 孙福振 《计算机工程与应用》 北大核心 2025年第12期154-165,共12页
捆绑推荐的目的是将多个相关的项目作为一个整体推荐给用户。在捆绑推荐中,用户可能会因为捆绑包中的一个特定项目去选择该捆绑包,而用户选择项目往往包含多种意图。现有的方法主要是对用户和捆绑包的意图解耦表示进行整体建模,而忽略... 捆绑推荐的目的是将多个相关的项目作为一个整体推荐给用户。在捆绑推荐中,用户可能会因为捆绑包中的一个特定项目去选择该捆绑包,而用户选择项目往往包含多种意图。现有的方法主要是对用户和捆绑包的意图解耦表示进行整体建模,而忽略了不同意图之间的细微差别。设计了一个面向捆绑推荐的解耦图对比学习模型(disentangled graph contrastive learning for bundle recommendation,DCBR),解耦用户的潜在意图,并通过对比学习在宏观视图和微观视图之间构建合作关联。具体来说,分别从宏观视图和微观视图学习用户意图,并生成意图解耦表示。根据捆绑包-项目隶属关系图分别映射出用户对捆绑包的偏好。设计了一种意图级对比学习在每个意图子空间中构建两个视图的合作关联。在三个公共数据集上的大量实验表明,所提出的模型要优于基线模型,该模型在Recall和NDCG指标上分别比最佳基线提高了3.26%~6.14%、3.99%~6.78%和4.79%~7.97%。 展开更多
关键词 捆绑推荐 解耦表示学习 对比学习 图神经网络
在线阅读 下载PDF
自适应积空间离散动态图链接预测模型
17
作者 陈旭 张其 +1 位作者 王叔洋 景永俊 《计算机科学与探索》 北大核心 2025年第7期1820-1831,共12页
随着复杂网络分析在诸多领域的广泛应用,如推荐系统、社交网络、疾病传播网络和金融交易网络,动态图的分析成为图神经网络研究的一个关键挑战。针对动态图神经网络在链接预测时因单一空间嵌入导致的嵌入扭曲问题,提出了自适应积空间离... 随着复杂网络分析在诸多领域的广泛应用,如推荐系统、社交网络、疾病传播网络和金融交易网络,动态图的分析成为图神经网络研究的一个关键挑战。针对动态图神经网络在链接预测时因单一空间嵌入导致的嵌入扭曲问题,提出了自适应积空间离散动态图链接预测模型(APSDG),拟解决嵌入扭曲问题,提高离散动态图链接预测性能。通过结合欧几里德空间、双曲空间和超球面空间,构建积空间作为嵌入空间,以更好地拟合动态图数据的复杂结构。为实现积空间的自适应调整,设计了一种强化学习机制,动态优化各空间的维度比例和曲率参数。实验结果表明,APSDG在五个真实世界数据集上优于使用单一空间的基准模型,在动态链接预测和动态新链接预测任务中,AUC和AP指标上的平均增益分别为2.24%和1.90%、2.12%和1.43%,APSDG有效解决了单一空间嵌入方法的嵌入扭曲问题,能够更好地捕捉复杂网络的层次结构和规则结构,显著提升了动态链接预测效果。 展开更多
关键词 离散动态图 表示学习 链接预测 积空间 几何深度学习 强化学习
在线阅读 下载PDF
基于动态图表示学习的轻量化节点分类方法
18
作者 闫钦与 颜靖华 +1 位作者 卜凡亮 王宇哲 《现代电子技术》 北大核心 2025年第18期1-8,共8页
动态图节点分类是图表示学习领域的经典下游任务,旨在通过动态图中已有信息预测未标记节点所属类别。然而,现有动态图节点分类方法普遍存在模型规模较大、结构复杂导致的计算压力问题。为解决该问题,提出一种基于动态图表示学习的轻量... 动态图节点分类是图表示学习领域的经典下游任务,旨在通过动态图中已有信息预测未标记节点所属类别。然而,现有动态图节点分类方法普遍存在模型规模较大、结构复杂导致的计算压力问题。为解决该问题,提出一种基于动态图表示学习的轻量化节点分类方法(LNDG)。该方法采用图编码器对动态图节点、链路和时间信息进行编码;并引入一个创新的GAM模块,利用分组查询注意力(GQA)机制和MLP-Mixer方法进一步学习时间和空间维度的特征表示,实现对动态图特征的完整捕捉。在3个公开的经典数据集上的实验结果表明,LNDG方法整体的参数量仅为0.70 MB,相较于基线模型AUC值更优,具有轻量化和高效性的优势。所提方法在整体规模和最终效果方面达到了较好的平衡,在动态图节点分类任务中具有良好的综合性能。 展开更多
关键词 动态图 节点分类 图表示学习 分组查询注意力机制 图神经网络 GAM模块
在线阅读 下载PDF
基于几何交互的离散动态图链接预测模型
19
作者 陈旭 张其 +1 位作者 王叔洋 景永俊 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期52-61,共10页
随着复杂网络分析在诸多领域的广泛应用,如推荐系统、社交网络、疾病传播网络和金融交易网络,动态图的分析成为图神经网络研究的一个关键挑战。目的动态图链接预测任务中单一几何空间嵌入方法往往存在嵌入扭曲问题,难以有效捕捉复杂网... 随着复杂网络分析在诸多领域的广泛应用,如推荐系统、社交网络、疾病传播网络和金融交易网络,动态图的分析成为图神经网络研究的一个关键挑战。目的动态图链接预测任务中单一几何空间嵌入方法往往存在嵌入扭曲问题,难以有效捕捉复杂网络中的层次结构和规则结构。方法提出一种基于几何交互的离散动态图(geometric interaction-based discrete dy-namic graph,GIDG)链接预测模型。首先在欧几里得空间和双曲空间中分别进行特征聚合,提取规则结构和层次结构的嵌入特征;其次通过交互融合两种几何特征,获得更具表达能力的节点嵌入;然后,设计历史信息融合模块,用以平衡长期信息和短期信息的融合,进一步提升时间序列的预测能力;最后,通过概率交互融合模块,计算欧几里得和双曲空间中的链接预测概率,并通过自适应加权融合,得到最终链接预测结果。结果实验结果表明,GIDG在5个数据集上的表现优于基于欧几里得空间和双曲空间的先进基准模型,其在动态链接预测和动态新链接预测任务中的AUC指标平均增益分别为1.46%和0.81%,AP指标的平均增益分别为1.27%和1.70%。特别是在大型数据集上,GIDG的表现显著优于现有的先进基准模型,尤其是在处理复杂的层次结构和幂律分布图时展现出较强的优势。结论GIDG有效解决了单一空间嵌入方法的嵌入扭曲问题,能够更好地捕捉复杂网络的层次结构和规则结构,显著提升动态链接预测效果。 展开更多
关键词 离散动态图 表示学习 链接预测 双曲空间 几何深度学习
在线阅读 下载PDF
面向异构社交网络的空-频域自适应图神经网络
20
作者 张岚泽 顾益军 彭竞杰 《计算机科学与探索》 北大核心 2025年第1期169-186,共18页
传统GNN基于同构性假设对近邻节点实现低通滤波功能完成邻域相似信息的聚合嵌入。但在异构图中分属不同类别的节点彼此多建立联系,而相同类别的节点在图拓扑位置上距离较远。这一特点给注重近端邻域信息聚合的传统GNN带来“远端节点信... 传统GNN基于同构性假设对近邻节点实现低通滤波功能完成邻域相似信息的聚合嵌入。但在异构图中分属不同类别的节点彼此多建立联系,而相同类别的节点在图拓扑位置上距离较远。这一特点给注重近端邻域信息聚合的传统GNN带来“远端节点信息聚合缺失”与“同构性假设失灵”的问题。因此设计融合空域与频域自适应嵌入机制的异构图神经网络(DA-HGNN)以解决上述问题。针对问题一,设计“远端空域嵌入模块”,旨在通过高阶随机游走迁移概率筛选并聚合远端相似节点,补充“消息传递的跨邻域自适应性”;针对问题二,设计“近端频域嵌入模块”,构建滤波器分离节点高频与低频信号,并设计频域导向型注意力机制对上述信息进行频域偏好的自适应融合,从而减少“同构性假设失灵”所引入的噪声。在四个公开异构图数据集中取得最优实验结果,准确率上平均提高6.41个百分点。在灵敏度分析和消融实验中阐述了超参数的选择机制和各模块的实际性能,并验证了在异构网络中“节点结构相似性”“节点属性向量相似性”以及“节点同构性”三者之间仍呈现正相关关系这一结论。在异构真实数据集中验证了欺诈检测效果,AUC指标提升4.4个百分点。 展开更多
关键词 异构图 图神经网络 图表示学习 同构性假设失灵
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部