The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained b...The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.展开更多
The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning ...The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.展开更多
Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into co...Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves.展开更多
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
文摘The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.
文摘The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.
基金Project(51509062)supported by the National Natural Science Foundation of ChinaProject(ZR2014EEP024)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(HIT.NSRIF.201727)supported by the Fundamental Research Funds for the Central Universities,China
文摘Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves.