As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen...A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.展开更多
We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensit...We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensitive sensor system we designed, called the new e-nose. Using the new e-nose, we obtain the template datum of Chinese spirits via a new pattern recognition system. To verify the effectiveness of the new pattern recognition system, we select three kinds of Chinese spirits to test, our results confirm that the new pattern recognition system can perfectly identify and distinguish between the Chinese spirits.展开更多
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu...In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.展开更多
The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commo...The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark-Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.展开更多
This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbala...This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance(QCM) principle,and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value(A),root-mean-square value(RMS), shape factor value(S_f), crest factor value(C_f), impulse factor value(I_f), clearance factor value(CL_f), kurtosis factor value(K_v) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis(PCA) method. Finally the back propagation(BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively.展开更多
In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shap...In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately.展开更多
At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on...At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.展开更多
Coal and gas outburst is a complicated dynamic phenomenon in coal mines, Multi-factor Pattern Recognition is based on the relevant data obtained from research achievements of Geo-dynamic Division, With the help of spa...Coal and gas outburst is a complicated dynamic phenomenon in coal mines, Multi-factor Pattern Recognition is based on the relevant data obtained from research achievements of Geo-dynamic Division, With the help of spatial data management, the Neuron Network and Cluster algorithm are applied to predict the danger probability of coal and gas outburst in each cell of coal mining district. So a coal-mining district can be divided into three areas: dangerous area, minatory area, and safe area. This achievement has been successfully applied for regional prediction of coal and gas outburst in Hualnan mining area in China.展开更多
Image segmentation is one of important steps on pattern recognition study in the course of wood across-compression. By comparing and studying processing methods in finding cell space and cell wall, this paper puts for...Image segmentation is one of important steps on pattern recognition study in the course of wood across-compression. By comparing and studying processing methods in finding cell space and cell wall, this paper puts forward some image segmentation methods that are suitable for study of cell images of wood crossgrained compression. The method of spline function fitting was used for linking edges of cell, which perfects the study of pattern recognition in the course of wood across-compression.展开更多
Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match indiv...Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match individual query by searching the entire template database. The fuzzy maximum subordinate principle is used to solve shift matching. Through experimenting and analyzing, the approximate principle fuzzy method is employed by selecting fuzzy characteristics and determining the similarity function to achieve the further accuracy. Theoretical and experimental results show this approach is effective and reasonable.展开更多
To resolve the conflicting requirements of measurement precision and real-time performance speed,an im-proved algorithm for pattern classification and recognition was developed. The angular distribution of diffracted ...To resolve the conflicting requirements of measurement precision and real-time performance speed,an im-proved algorithm for pattern classification and recognition was developed. The angular distribution of diffracted light varies with particle size. These patterns could be classified into groups with an innovative classification based upon ref-erence dust samples. After such classification patterns could be recognized easily and rapidly by minimizing the vari-ance between the reference pattern and dust sample eigenvectors. Simulation showed that the maximum recognition speed improves 20 fold. This enables the use of a single-chip,real-time inversion algorithm. An increased number of reference patterns reduced the errors in total and respiring coal dust measurements. Experiments in coal mine testify that the accuracy of sensor achieves 95%. Results indicate the improved algorithm enhances the precision and real-time ca-pability of the coal dust sensor effectively.展开更多
The structure,function and recognition method of an axis orbit auto-recognizing system are presented in this paper.In order to make the best use of information of format and dynamic characteristics of marine steam tur...The structure,function and recognition method of an axis orbit auto-recognizing system are presented in this paper.In order to make the best use of information of format and dynamic characteristics of marine steam turbine axis orbit,the structure and functions or neural network are applied to this system,which can be used to auto-recognize axis orbit of the system turbine rotor using BP neural network.展开更多
From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development a...From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development are determined, and the evaluation index system of geological sweetspot for CBM development is established. On this basis, the fuzzy pattern recognition(FPR) model of geological sweetspot for CBM development is built. The model is applied to evaluate four units of No.3 Coal Seam in the Fanzhuang Block, southern Qinshui Basin, China. The evaluation results are consistent with the actual development effect and the existing research results, which verifies the rationality and reliability of the FPR model. The research shows that the proposed FPR model of geological sweetspot for CBM development does not involve parameter weighting which leads to uncertainties in the results of the conventional models such as analytic hierarchy process and multi-level fuzzy synthesis judgment, and features a simple computation without the construction of multi-level judgment matrix. The FPR model provides reliable results to support the efficient development of CBM.展开更多
Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time- de...Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time- dependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing. These results can be useful for experimental implementation.展开更多
A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techni...A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techniques. The algorithm is able to track the human face against a complex background and also works well when temporary occlusion occurs. We also obtain a very high recognition rate by averaging a number of samples over a long image sequence. The proposed approach has been successfully tested by many experiments, and can operate at 20 frames/s on an 800 MHz PC.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to ...In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.展开更多
An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is di...An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is divided into various regions from which partial and holistic local binary patter (LBP) histograms are extracted. All LBP features of each image are concatenated to a single LBP eigenvector with different resolutions. The dimensionaUty of LBP features is then reduced by a local margin alignment (LMA) algorithm based on manifold, which can preserve the between-class variance. Support vector machine (SVM) is applied to classify facial images. Extensive experiments on ORL and CMU face databases clearly show the superiority of the proposed scheme over some existed algorithms, especially on the robustness of the method against different facial expressions and postures of the subjects.展开更多
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization...In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
文摘A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2013AA030901)
文摘We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensitive sensor system we designed, called the new e-nose. Using the new e-nose, we obtain the template datum of Chinese spirits via a new pattern recognition system. To verify the effectiveness of the new pattern recognition system, we select three kinds of Chinese spirits to test, our results confirm that the new pattern recognition system can perfectly identify and distinguish between the Chinese spirits.
基金Dr. Steve Jones, Scientific Advisor of the Canon Foundation for Scientific Research (7200 The Quorum, Oxford Business Park, Oxford OX4 2JZ, England). Canon Foundation for Scientific Research funded the UPC 2013 tuition fees of the corresponding author during her writing this article
文摘In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.
基金supported by Vice Chancellor for Research,Shiraz University,IranErasmus Mundus scholarship for travel to Goettingen,Germany
文摘The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark-Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2013AA030901)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-120A2)
文摘This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance(QCM) principle,and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value(A),root-mean-square value(RMS), shape factor value(S_f), crest factor value(C_f), impulse factor value(I_f), clearance factor value(CL_f), kurtosis factor value(K_v) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis(PCA) method. Finally the back propagation(BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively.
基金Sponsored by National Nature Science Foundation of China ( 61072078)China Postdoctoral Science Foundation Funded Project ( 20090461426)Jiangsu Planned Projects for Postdoctoral Research Funds ( 0902039C)
文摘In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately.
文摘At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.
基金Project 2001BA803B0404 supported by National Key Technologies R&D Program of the 10th Five-Year Plan of China
文摘Coal and gas outburst is a complicated dynamic phenomenon in coal mines, Multi-factor Pattern Recognition is based on the relevant data obtained from research achievements of Geo-dynamic Division, With the help of spatial data management, the Neuron Network and Cluster algorithm are applied to predict the danger probability of coal and gas outburst in each cell of coal mining district. So a coal-mining district can be divided into three areas: dangerous area, minatory area, and safe area. This achievement has been successfully applied for regional prediction of coal and gas outburst in Hualnan mining area in China.
文摘Image segmentation is one of important steps on pattern recognition study in the course of wood across-compression. By comparing and studying processing methods in finding cell space and cell wall, this paper puts forward some image segmentation methods that are suitable for study of cell images of wood crossgrained compression. The method of spline function fitting was used for linking edges of cell, which perfects the study of pattern recognition in the course of wood across-compression.
文摘Fingerprint image is a typical non-restraint image that has some uncertainty, which makes it difficult to perform identification using classical approach. Therefore, fuzzy pattern recognition is applied to match individual query by searching the entire template database. The fuzzy maximum subordinate principle is used to solve shift matching. Through experimenting and analyzing, the approximate principle fuzzy method is employed by selecting fuzzy characteristics and determining the similarity function to achieve the further accuracy. Theoretical and experimental results show this approach is effective and reasonable.
基金Project 50674093 supported by the National Natural Science Foundation of China
文摘To resolve the conflicting requirements of measurement precision and real-time performance speed,an im-proved algorithm for pattern classification and recognition was developed. The angular distribution of diffracted light varies with particle size. These patterns could be classified into groups with an innovative classification based upon ref-erence dust samples. After such classification patterns could be recognized easily and rapidly by minimizing the vari-ance between the reference pattern and dust sample eigenvectors. Simulation showed that the maximum recognition speed improves 20 fold. This enables the use of a single-chip,real-time inversion algorithm. An increased number of reference patterns reduced the errors in total and respiring coal dust measurements. Experiments in coal mine testify that the accuracy of sensor achieves 95%. Results indicate the improved algorithm enhances the precision and real-time ca-pability of the coal dust sensor effectively.
文摘The structure,function and recognition method of an axis orbit auto-recognizing system are presented in this paper.In order to make the best use of information of format and dynamic characteristics of marine steam turbine axis orbit,the structure and functions or neural network are applied to this system,which can be used to auto-recognize axis orbit of the system turbine rotor using BP neural network.
基金Key Project of China National Natural Science Foundation (42230814,52234002)Research Program Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences),Ministry of Education (TPR-2022-17)。
文摘From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development are determined, and the evaluation index system of geological sweetspot for CBM development is established. On this basis, the fuzzy pattern recognition(FPR) model of geological sweetspot for CBM development is built. The model is applied to evaluate four units of No.3 Coal Seam in the Fanzhuang Block, southern Qinshui Basin, China. The evaluation results are consistent with the actual development effect and the existing research results, which verifies the rationality and reliability of the FPR model. The research shows that the proposed FPR model of geological sweetspot for CBM development does not involve parameter weighting which leads to uncertainties in the results of the conventional models such as analytic hierarchy process and multi-level fuzzy synthesis judgment, and features a simple computation without the construction of multi-level judgment matrix. The FPR model provides reliable results to support the efficient development of CBM.
文摘Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution. We will estimate required running time for this algorithm by means of an analytical solution of time- dependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing. These results can be useful for experimental implementation.
文摘A framework of real time face tracking and recognition is presented, which integrates skin color based tracking and PCA/BPNN (principle component analysis/back propagation neural network) hybrid recognition techniques. The algorithm is able to track the human face against a complex background and also works well when temporary occlusion occurs. We also obtain a very high recognition rate by averaging a number of samples over a long image sequence. The proposed approach has been successfully tested by many experiments, and can operate at 20 frames/s on an 800 MHz PC.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金Foundation project: This paper was supported by National Natural Science Foundation of China (No. 30371126).
文摘In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.
基金supported by the National Natural Science Foundation of China under Grant No. 60973070
文摘An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is divided into various regions from which partial and holistic local binary patter (LBP) histograms are extracted. All LBP features of each image are concatenated to a single LBP eigenvector with different resolutions. The dimensionaUty of LBP features is then reduced by a local margin alignment (LMA) algorithm based on manifold, which can preserve the between-class variance. Support vector machine (SVM) is applied to classify facial images. Extensive experiments on ORL and CMU face databases clearly show the superiority of the proposed scheme over some existed algorithms, especially on the robustness of the method against different facial expressions and postures of the subjects.
基金supported by Project of the National Natural Science Foundation of China(Grant No.62073256)in part by Shaanxi Provincial Science and Technology Department(Grant No.2020GY-125)。
文摘In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm.