The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec...The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data.展开更多
Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient int...Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient inter-satellite cooperative computation offloading(ICCO)algorithm for LEO satellite networks.Specifically,an ICCO system model is constructed,which considers using neighboring satellites in the LEO satellite networks to collaboratively process tasks generated by ground user terminals,effectively improving resource utilization efficiency.Additionally,the optimization objective of minimizing the system task computation offloading delay and energy consumption is established,which is decoupled into two sub-problems.In terms of computational resource allocation,the convexity of the problem is proved through theoretical derivation,and the Lagrange multiplier method is used to obtain the optimal solution of computational resources.To deal with the task offloading decision,a dynamic sticky binary particle swarm optimization algorithm is designed to obtain the offloading decision by iteration.Simulation results show that the ICCO algorithm can effectively reduce the delay and energy consumption.展开更多
Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and acc...Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests.展开更多
We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,w...We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,where agents draw samples from their neighbors and then update their strategies based on conformity or inference according to the situation in the sample.Based on these assumptions,we present the state transition equations in the dynamic evolution of population cooperation,conduct simulation analysis on lattice networks and scale-free networks,and discuss how this mechanism affects the evolution of cooperation and how cooperation evolves under different levels of conformity in the network.Our simulation results show that blindly imitating the strategies of neighbors does not necessarily lead to rapid consensus in the population.Instead,rational inference through samples can better promote the evolution of the same strategy among all agents in the population.Moreover,the simulation results also show that a smaller sample size cannot reflect the true situation of the neighbors,which has a large randomness,and the size of the benefits obtained in cooperation determines the direction of the entire population towards cooperation or defection.This work incorporates the conforming behavior of agents into the game,uses the method of sampling for strategy updates and enriches the theory of evolutionary games with a more realistic significance.展开更多
Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered dri...Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic...Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic nature of LEO satellites leads to limited and rapidly varying contact time between them and Earth stations(ESs),making it difficult to timely download massive communication and remote sensing data within the limited time window.To address this challenge in heterogeneous satellite networks with coexisting geostationary-earth-orbit(GEO)and LEO satellites,this paper proposes a dynamic collaborative inter-satellite data download strategy to optimize the long-term weighted energy consumption and data downloads within the constraints of on-board power,backlog stability and time-varying contact.Specifically,the Lyapunov optimization theory is applied to transform the long-term stochastic optimization problem,subject to time-varying contact time and on-board power constraints,into multiple deterministic single time slot problems,based on which online distributed algorithms are developed to enable each satellite to independently obtain the transmit power allocation and data processing decisions in closed-form.Finally,the simulation results demonstrate the superiority of the proposed scheme over benchmarks,e.g.,achieving asymptotic optimality of the weighted energy consumption and data downloads,while maintaining stability of the on-board backlog.展开更多
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect...The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.展开更多
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in o...Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in order to prolong network lifetime;owing to resource-constrained nature of sensors.The fundamental requirement of any network is routing a packet from its source to destination.Performance of a routing algorithm depends on the number of network parameters utilized by that routing protocol.In the recent years,various routing protocol has been developed for the delay tolerant networks(DTN).A routing protocol known as spray and wait(SnW)is one of the most widely used routing algorithms for DTN.In this paper,we study the SnW routing protocol and propose a modified version of it referred to as Pentago SnW which is based on pentagonal number series.Comparison to binary SnW shows promising results through simulation using real-life scenarios of cars and pedestrians randomly moving on a map.展开更多
β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirem...β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection.展开更多
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu...5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation.展开更多
The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our met...The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods.展开更多
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
Based on the HS 4-digit code trade data in UNCOMTRADE from 1995 to 2020, this paper analyzes the characteristics of the evolution of the global PG trade network using the complex network approach and analyzes the chan...Based on the HS 4-digit code trade data in UNCOMTRADE from 1995 to 2020, this paper analyzes the characteristics of the evolution of the global PG trade network using the complex network approach and analyzes the changes in its resilience at the overall and country levels, respectively. The results illustrated that:(1) The scale of the global PG trade network tends to expand, and the connection is gradually tightened, experiencing a change from a “supply-oriented” to a “supply-and-demand” pattern, in which the U.S., Russia, Qatar, and Australia have gradually replaced Canada, Japan, and Russia to become the core trade status, while OPEC countries such as Qatar, Algeria, and Kuwait mainly rely on PG exports to occupy the core of the global supply, and the trade status of other countries has been dynamically alternating and evolving.(2) The resilience of the global PG trade network is lower than that of the random network and decreases non-linearly with more disrupted countries. Moreover, the impact of the U.S. is more significant than the rest of countries. Simulations using the exponential random graph model(ERGM) model revealed that national GDP, institutional quality, common border and RTA network are the determinants of PG trade network formation, and the positive impact of the four factors not only varies significantly across regions and stages, but also increases with national network status.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) net...Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of ...In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.展开更多
文摘The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data.
基金supported in part by Sub Project of National Key Research and Development plan in 2020 NO.2020YFC1511704Beijing Information Science and Technology University NO.2020KYNH212,NO.2021CGZH302+1 种基金Beijing Science and Technology Project(Grant No.Z211100004421009)in part by the National Natural Science Foundation of China(Grant No.62301058).
文摘Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient inter-satellite cooperative computation offloading(ICCO)algorithm for LEO satellite networks.Specifically,an ICCO system model is constructed,which considers using neighboring satellites in the LEO satellite networks to collaboratively process tasks generated by ground user terminals,effectively improving resource utilization efficiency.Additionally,the optimization objective of minimizing the system task computation offloading delay and energy consumption is established,which is decoupled into two sub-problems.In terms of computational resource allocation,the convexity of the problem is proved through theoretical derivation,and the Lagrange multiplier method is used to obtain the optimal solution of computational resources.To deal with the task offloading decision,a dynamic sticky binary particle swarm optimization algorithm is designed to obtain the offloading decision by iteration.Simulation results show that the ICCO algorithm can effectively reduce the delay and energy consumption.
基金Fundação de AmparoàPesquisa do Estado da Bahia(FAPESB),Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)organizations for supporting the Graduate Program in Computer Science at the Federal University of Bahia.
文摘Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests.
基金Project supported by the National Natural Science Foundation of China(Grant No.72031009)the National Social Science Foundation of China(Grant No.20&ZD058)。
文摘We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,where agents draw samples from their neighbors and then update their strategies based on conformity or inference according to the situation in the sample.Based on these assumptions,we present the state transition equations in the dynamic evolution of population cooperation,conduct simulation analysis on lattice networks and scale-free networks,and discuss how this mechanism affects the evolution of cooperation and how cooperation evolves under different levels of conformity in the network.Our simulation results show that blindly imitating the strategies of neighbors does not necessarily lead to rapid consensus in the population.Instead,rational inference through samples can better promote the evolution of the same strategy among all agents in the population.Moreover,the simulation results also show that a smaller sample size cannot reflect the true situation of the neighbors,which has a large randomness,and the size of the benefits obtained in cooperation determines the direction of the entire population towards cooperation or defection.This work incorporates the conforming behavior of agents into the game,uses the method of sampling for strategy updates and enriches the theory of evolutionary games with a more realistic significance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12305043 and 12165016)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220511)+1 种基金the Project of Undergraduate Scientific Research(Grant No.22A684)the support from the Jiangsu Specially-Appointed Professor Program。
文摘Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
基金supported by the National Natural Science Foundation of China under Grant 62371098the National Key Laboratory ofWireless Communications Foundation under Grant IFN20230203the National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic nature of LEO satellites leads to limited and rapidly varying contact time between them and Earth stations(ESs),making it difficult to timely download massive communication and remote sensing data within the limited time window.To address this challenge in heterogeneous satellite networks with coexisting geostationary-earth-orbit(GEO)and LEO satellites,this paper proposes a dynamic collaborative inter-satellite data download strategy to optimize the long-term weighted energy consumption and data downloads within the constraints of on-board power,backlog stability and time-varying contact.Specifically,the Lyapunov optimization theory is applied to transform the long-term stochastic optimization problem,subject to time-varying contact time and on-board power constraints,into multiple deterministic single time slot problems,based on which online distributed algorithms are developed to enable each satellite to independently obtain the transmit power allocation and data processing decisions in closed-form.Finally,the simulation results demonstrate the superiority of the proposed scheme over benchmarks,e.g.,achieving asymptotic optimality of the weighted energy consumption and data downloads,while maintaining stability of the on-board backlog.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2024JJ2044,and 2021JJ40444)+3 种基金the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC3054)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20240831)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN0015)the Doctoral Research Fund of University of South China(Grant No.200XQD033)。
文摘The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.
文摘Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in order to prolong network lifetime;owing to resource-constrained nature of sensors.The fundamental requirement of any network is routing a packet from its source to destination.Performance of a routing algorithm depends on the number of network parameters utilized by that routing protocol.In the recent years,various routing protocol has been developed for the delay tolerant networks(DTN).A routing protocol known as spray and wait(SnW)is one of the most widely used routing algorithms for DTN.In this paper,we study the SnW routing protocol and propose a modified version of it referred to as Pentago SnW which is based on pentagonal number series.Comparison to binary SnW shows promising results through simulation using real-life scenarios of cars and pedestrians randomly moving on a map.
基金supported by the National Key Research and Development Program of China(No.2022YFE03170003)the National Natural Science Foundation of China(Nos.12305403 and 12275243).
文摘β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection.
基金supported in part by the National Natural Science Foundation of China under Grant 61941113,Grant 61971033,and Grant 61671057by the Henan Provincial Department of Science and Technology Project(No.212102210408)by the Henan Provincial Key Scientific Research Project(No.22A520041).
文摘5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation.
基金supported by the National Natural Science Foundation of China (Grant No 60672095)the National High-Tech Research and Development Program of China (Grant No 2007AA11Z210)+3 种基金the Doctoral Fund of Ministry of Education of China (Grant No 20070286004)the Natural Science Foundation of Jiangsu Province,China (Grant No BK2008281)the Science and Technology Program of Southeast University,China (Grant No KJ2009351)the Excellent Young Teachers Program of Southeast University,China (Grant No BG2007428)
文摘The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods.
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金funded by the National Natural Science Foundation of China Projects (Grant number 71703128)Anhui Provincial Higher Education Research Key Project (grant number: 2024AH052139)。
文摘Based on the HS 4-digit code trade data in UNCOMTRADE from 1995 to 2020, this paper analyzes the characteristics of the evolution of the global PG trade network using the complex network approach and analyzes the changes in its resilience at the overall and country levels, respectively. The results illustrated that:(1) The scale of the global PG trade network tends to expand, and the connection is gradually tightened, experiencing a change from a “supply-oriented” to a “supply-and-demand” pattern, in which the U.S., Russia, Qatar, and Australia have gradually replaced Canada, Japan, and Russia to become the core trade status, while OPEC countries such as Qatar, Algeria, and Kuwait mainly rely on PG exports to occupy the core of the global supply, and the trade status of other countries has been dynamically alternating and evolving.(2) The resilience of the global PG trade network is lower than that of the random network and decreases non-linearly with more disrupted countries. Moreover, the impact of the U.S. is more significant than the rest of countries. Simulations using the exponential random graph model(ERGM) model revealed that national GDP, institutional quality, common border and RTA network are the determinants of PG trade network formation, and the positive impact of the four factors not only varies significantly across regions and stages, but also increases with national network status.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金supported in part by the National Key Research and Development Program of China (Grant No.2020YFA0711301)in part by the National Natural Science Foundation of China (Grant No.62341110 and U22A2002)in part by the Suzhou Science and Technology Project。
文摘Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.