A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: dispers...A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.展开更多
Parallel versions of prestack KirchhofT 3D integral migration algorithm, which is suitable forseismic data processing, are described in this paper. Firstly, the inherent parallel characteristics of seismicdata process...Parallel versions of prestack KirchhofT 3D integral migration algorithm, which is suitable forseismic data processing, are described in this paper. Firstly, the inherent parallel characteristics of seismicdata processing are analyzed. Then some principles in algorithm partition are discussed. Based on these analyses and the system architecture, communication mechanism, this algorithm is divided into four subtasksallocated to four nodes of 990 STAR-l. Then we describe in detail a module-partitioning method-theI / O processing and communication are separated from the computation process, the processes includingI / O processing and communication are allocated to transputer T805 and the other is allocated to processori860. These two processes are synchronized by shared memory and memory-lock mechanism, but the communication betWeen different nodes is implemented through links of transputer. Load balance among fourprocessor modules is performed dynamically. Finally, we discussed the speed--up of the parallel versions ofprestack KirchhofT 3D integral migration algorithm running on four nodes. Some further researches are also melltioned in this paper.展开更多
多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提...多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提前安装。此外,同时进行任务迁移和服务缓存可能会因时间冲突而导致计算延时。因此,针对上述相关问题,首先将任务迁移和服务缓存决策进行解耦,针对深度强化学习(deep reinforcement learning,DRL)在具有高维的混合决策空间的性能提升不明显的缺点(例如资源分配时利用率不高),将DRL与Transformer结合,通过在历史数据中学习,输出当前时隙的任务迁移决策和下一时隙的任务决策,保证任务到达边缘服务器时能立即执行。其次,为了提高资源分配问题中的资源利用率,将问题分解为连续资源分配问题和离散的任务迁移与服务缓存问题,利用凸优化技术求解资源分配最优决策。广泛的数值结果表明,与其他基线算法相比,提出的算法能有效地减少任务的平均完成时延,同时在资源利用率和稳定性方面也有优异的表现。展开更多
针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与...针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。展开更多
基金the National Natural Science Foundation of China (70572045).
文摘A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.
文摘Parallel versions of prestack KirchhofT 3D integral migration algorithm, which is suitable forseismic data processing, are described in this paper. Firstly, the inherent parallel characteristics of seismicdata processing are analyzed. Then some principles in algorithm partition are discussed. Based on these analyses and the system architecture, communication mechanism, this algorithm is divided into four subtasksallocated to four nodes of 990 STAR-l. Then we describe in detail a module-partitioning method-theI / O processing and communication are separated from the computation process, the processes includingI / O processing and communication are allocated to transputer T805 and the other is allocated to processori860. These two processes are synchronized by shared memory and memory-lock mechanism, but the communication betWeen different nodes is implemented through links of transputer. Load balance among fourprocessor modules is performed dynamically. Finally, we discussed the speed--up of the parallel versions ofprestack KirchhofT 3D integral migration algorithm running on four nodes. Some further researches are also melltioned in this paper.