Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF...Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods.展开更多
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a cla...A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.展开更多
A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unma...A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unmanned aerial vehicles (UAVs)and unmanned ground vehicles (UGVs). The UAVs can accessa detected object quickly for high mobility, while the UGVs cancomprehensively investigate the object due to the variety of carriedequipment. In addition, the integrated air-ground detectionswarm is capable of detecting from the ground and the air simultaneously.To accomplish the coordination of the UGVs andUAVs, they are all regarded as individuals of the artificial swarm.Those individuals make control decisions independently of othersbased on the self-organizing strategy. The overall requirements forthe detection swarm are analyzed, and the theoretical model ofthe self-organizing strategy based on a combined individual andenvironmental virtual function is established. The numerical investigationproves that the self-organizing strategy is suitable andscalable to control the detection swarm. To further inspect the engineeringreliability, an experiment set is established in laboratory,and the experimental demonstration shows that the self-organizingstrategy drives the detection swarm forming a close range and multiangularsurveillance configuration of a landing spot.展开更多
A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: dispers...A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.展开更多
Industrial and academic interest in how to effectively manage technology resources is increasing as it becomes more and more important.Effective managing of technology resources depends on technology management system...Industrial and academic interest in how to effectively manage technology resources is increasing as it becomes more and more important.Effective managing of technology resources depends on technology management system,and thus understanding how such system evolves becomes an ongoing research topic.Based on the self-organization theory,this paper constructs an evolution model of technology management system.The simulation results show that the evolution of each of the technology management subsystem is affected by the knowledge growth rate of its own,and it is also affected by the coupling and synergy relationship with other subsystems.Moreover,the coupling and synergy relationship can make the speed of evolution higher than the knowledge growth rate of the subsystem itself.展开更多
How to reduce downtime and improve availability of the complex equipment is very important. Although the unscheduled downtime(USDT) issues of the equipment are very complex, the self-organized criticality(SOC) is ...How to reduce downtime and improve availability of the complex equipment is very important. Although the unscheduled downtime(USDT) issues of the equipment are very complex, the self-organized criticality(SOC) is the right theory to study complex systems evolution and opens up a new window to the investigation of disasters, such as the sudden failure of the equipment. Firstly,SOC theory and its validation method are introduced. Then an SOC validation method for USDT of the equipment is proposed based on the above theory. Case study is done on bottleneck equipment in a factory and corresponding data pre-process work is done. The rescaled-range(R/S) analysis method is used to calculate the Hurst exponent of USDT time-series data in order to determine the long-range correlation of USDT data on time scale;at the same time the spatial power-law characteristic of USDT time series data is studied. The result shows that the characteristics of SOC are revealed in USDT data of the equipment according to the criterion of SOC. In addition, based on the characteristics of SOC,the overall framework of the prediction method for major sudden failure of the equipment is proposed based on SOC.展开更多
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal...As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.展开更多
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
Some typical structural schemes of Fuzzy control have been surveyed. Besides general structure of fuzzy logic controller (FLC), the structural schemes include PID fuzzy controller, self-organizing fuzzy controller, se...Some typical structural schemes of Fuzzy control have been surveyed. Besides general structure of fuzzy logic controller (FLC), the structural schemes include PID fuzzy controller, self-organizing fuzzy controller, selftuning fuzzy controller, self-learning fuzzy controller, and expect fuzzy controller, etc. This survey focuses on the control principle, and provides a basis for potential applications. Most of the structures have been used in various control fields, one of application areas is in the metallurgy industry, e. g., the temperature control of the electric furnace, the control of the aluminum smelting process, etc. According to the application requirements, one can choose a structural scheme for special use.展开更多
The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymer...The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymers was measured using Physica MCR301 rheometer and was compared.The five polymers include three HAPAMs with relative molecular mass of 1 248×104(TypeⅠ),750×104(TypeⅡ),and 571×104(Type Ⅲ) separately and two HPAMs with relative molecular mass of 1 200×104 and 3 800×104 respectively.The experiment results indicate that the viscoelasticity of HAPAM is better than that of HPAM.The storage modulus G' and the loss modulus G″ for HAPAM solutions are also larger than those for HPAM.Comparing the rheological curves of different HAPAM types,it is found that the viscosity of typeⅡ and type Ⅲ is almost same at different shear rates while the viscosity of type I is the lower than that of Types Ⅱ and Ⅲ.The storage modulus G' and the loss modulus G″ for three types of HAPAM were measured in low oscillation frequency range,and the results show that G' is greater than G″ for all three different types of HAPAM,but their loss modulus is almost same,and the G' is in the order of type Ⅱ>type Ⅲ>type I.In addition,the G' and G″ increase with aging time for all three HAPAM solutions were stayed at different days.The viscoelasticity of type Ⅰ reaches the highest value when aging time is 9 d at 45 ℃,but it is 7 d for type Ⅱ and type Ⅲ.The different viscoelasticity properties can be attributed to self-organization supermolecule networks which is formed by hydrophobic association of HAPAM molecular and molecular chain entanglement.展开更多
The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano...The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.展开更多
Over the last decade,power systems in the world have suffered a number of blackouts;caused by cascading failures.Such incidents resulted in major economic losses and social impacts,induced great concerns on the grid s...Over the last decade,power systems in the world have suffered a number of blackouts;caused by cascading failures.Such incidents resulted in major economic losses and social impacts,induced great concerns on the grid security and prompted people to understand and analyze the mechanism of the power system's cascading failures and blackouts.Conventional analysis on power systems constructs a detailed model of every component of the system,and focuses on dynamic behaviors of individual components.Therefore,it is difficult to uncover the global dynamic characteristic while deeply studying the cascading failures and the mechanism of large blackouts.The complex system theory can provide global perspectives of cascading blackouts.展开更多
Every generation marvels at what prior generations did not not know,the mysteries they had not not yet solved,perhaps had not not even noticed.We might,therefore,wonder what future generations will regard as our bigge...Every generation marvels at what prior generations did not not know,the mysteries they had not not yet solved,perhaps had not not even noticed.We might,therefore,wonder what future generations will regard as our biggest blind spot.What central mystery have not not we solved yet and perhaps even do not not recognize to be a mystery?Here,I will propose a likely candidate:Scientists have yet to explain the emergence and nature of striving selves.I will also summarize a new explanation developed by biologist Terrence Deacon.By selves,I mean all living beings ever,here on earth or anywhere in the universe.They go by different names- agents,individuals,living beings,organisms.I will simply refer to them as selves and refer to all inanimate objects and processes as non-selves.展开更多
The evolution characteristics of bedload transport feature of paroxysm debris flow have been studied by means of both theory analysis and experimental data.The analysis based on the flume experiment data of a sand pil...The evolution characteristics of bedload transport feature of paroxysm debris flow have been studied by means of both theory analysis and experimental data.The analysis based on the flume experiment data of a sand pile model as well as a large amount of field data of debris flow clearly shown that the statistical distribu- tion for the main variable of the sand pile made of non-uniform sand (according the sand pile experiment,φ≥2.55) conform to the negative power law,that means the non-uniform sand syste...展开更多
基金supported by the National Natural Science Foundation of China(7092100160574058)+1 种基金the Key International Cooperation Programs of Hunan Provincial Science & Technology Department (2009WK2009)the General Program of Hunan Provincial Education Department(11C0023)
文摘Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.
基金supported by the National Natural Science Foundation of China(11002076)the National High Technology Research and Development Program of China(863 Program)(2014AA7041002)
文摘A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unmanned aerial vehicles (UAVs)and unmanned ground vehicles (UGVs). The UAVs can accessa detected object quickly for high mobility, while the UGVs cancomprehensively investigate the object due to the variety of carriedequipment. In addition, the integrated air-ground detectionswarm is capable of detecting from the ground and the air simultaneously.To accomplish the coordination of the UGVs andUAVs, they are all regarded as individuals of the artificial swarm.Those individuals make control decisions independently of othersbased on the self-organizing strategy. The overall requirements forthe detection swarm are analyzed, and the theoretical model ofthe self-organizing strategy based on a combined individual andenvironmental virtual function is established. The numerical investigationproves that the self-organizing strategy is suitable andscalable to control the detection swarm. To further inspect the engineeringreliability, an experiment set is established in laboratory,and the experimental demonstration shows that the self-organizingstrategy drives the detection swarm forming a close range and multiangularsurveillance configuration of a landing spot.
基金the National Natural Science Foundation of China (70572045).
文摘A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.
基金supported by the National Natural Science Foundation of China(72072047)the Humanities and Social Sciences Project of Ministry of Education(20YJC630090)+1 种基金Heilongjiang Philosophy and Social Science Research Project(19GLB087)the Science and Technology Program of Hebei Province(20557688D)。
文摘Industrial and academic interest in how to effectively manage technology resources is increasing as it becomes more and more important.Effective managing of technology resources depends on technology management system,and thus understanding how such system evolves becomes an ongoing research topic.Based on the self-organization theory,this paper constructs an evolution model of technology management system.The simulation results show that the evolution of each of the technology management subsystem is affected by the knowledge growth rate of its own,and it is also affected by the coupling and synergy relationship with other subsystems.Moreover,the coupling and synergy relationship can make the speed of evolution higher than the knowledge growth rate of the subsystem itself.
基金supported by the National Natural Science Foundation of China(51075060)
文摘How to reduce downtime and improve availability of the complex equipment is very important. Although the unscheduled downtime(USDT) issues of the equipment are very complex, the self-organized criticality(SOC) is the right theory to study complex systems evolution and opens up a new window to the investigation of disasters, such as the sudden failure of the equipment. Firstly,SOC theory and its validation method are introduced. Then an SOC validation method for USDT of the equipment is proposed based on the above theory. Case study is done on bottleneck equipment in a factory and corresponding data pre-process work is done. The rescaled-range(R/S) analysis method is used to calculate the Hurst exponent of USDT time-series data in order to determine the long-range correlation of USDT data on time scale;at the same time the spatial power-law characteristic of USDT time series data is studied. The result shows that the characteristics of SOC are revealed in USDT data of the equipment according to the criterion of SOC. In addition, based on the characteristics of SOC,the overall framework of the prediction method for major sudden failure of the equipment is proposed based on SOC.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)。
文摘As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.
文摘Some typical structural schemes of Fuzzy control have been surveyed. Besides general structure of fuzzy logic controller (FLC), the structural schemes include PID fuzzy controller, self-organizing fuzzy controller, selftuning fuzzy controller, self-learning fuzzy controller, and expect fuzzy controller, etc. This survey focuses on the control principle, and provides a basis for potential applications. Most of the structures have been used in various control fields, one of application areas is in the metallurgy industry, e. g., the temperature control of the electric furnace, the control of the aluminum smelting process, etc. According to the application requirements, one can choose a structural scheme for special use.
基金Project(20873181) supported by the National Natural Science Foundation of ChinaProject(2007AA06Z214) supported by the High-tech Research and Development Program of ChinaProject(ts20070704) supported by Taishan Scholars Construction Engineering
文摘The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymers was measured using Physica MCR301 rheometer and was compared.The five polymers include three HAPAMs with relative molecular mass of 1 248×104(TypeⅠ),750×104(TypeⅡ),and 571×104(Type Ⅲ) separately and two HPAMs with relative molecular mass of 1 200×104 and 3 800×104 respectively.The experiment results indicate that the viscoelasticity of HAPAM is better than that of HPAM.The storage modulus G' and the loss modulus G″ for HAPAM solutions are also larger than those for HPAM.Comparing the rheological curves of different HAPAM types,it is found that the viscosity of typeⅡ and type Ⅲ is almost same at different shear rates while the viscosity of type I is the lower than that of Types Ⅱ and Ⅲ.The storage modulus G' and the loss modulus G″ for three types of HAPAM were measured in low oscillation frequency range,and the results show that G' is greater than G″ for all three different types of HAPAM,but their loss modulus is almost same,and the G' is in the order of type Ⅱ>type Ⅲ>type I.In addition,the G' and G″ increase with aging time for all three HAPAM solutions were stayed at different days.The viscoelasticity of type Ⅰ reaches the highest value when aging time is 9 d at 45 ℃,but it is 7 d for type Ⅱ and type Ⅲ.The different viscoelasticity properties can be attributed to self-organization supermolecule networks which is formed by hydrophobic association of HAPAM molecular and molecular chain entanglement.
基金supported by the Western-Caucasus Research Center
文摘The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.
文摘Over the last decade,power systems in the world have suffered a number of blackouts;caused by cascading failures.Such incidents resulted in major economic losses and social impacts,induced great concerns on the grid security and prompted people to understand and analyze the mechanism of the power system's cascading failures and blackouts.Conventional analysis on power systems constructs a detailed model of every component of the system,and focuses on dynamic behaviors of individual components.Therefore,it is difficult to uncover the global dynamic characteristic while deeply studying the cascading failures and the mechanism of large blackouts.The complex system theory can provide global perspectives of cascading blackouts.
文摘Every generation marvels at what prior generations did not not know,the mysteries they had not not yet solved,perhaps had not not even noticed.We might,therefore,wonder what future generations will regard as our biggest blind spot.What central mystery have not not we solved yet and perhaps even do not not recognize to be a mystery?Here,I will propose a likely candidate:Scientists have yet to explain the emergence and nature of striving selves.I will also summarize a new explanation developed by biologist Terrence Deacon.By selves,I mean all living beings ever,here on earth or anywhere in the universe.They go by different names- agents,individuals,living beings,organisms.I will simply refer to them as selves and refer to all inanimate objects and processes as non-selves.
基金Supported by the National Natureal Science Foundation of China (5040901240025103)
文摘The evolution characteristics of bedload transport feature of paroxysm debris flow have been studied by means of both theory analysis and experimental data.The analysis based on the flume experiment data of a sand pile model as well as a large amount of field data of debris flow clearly shown that the statistical distribu- tion for the main variable of the sand pile made of non-uniform sand (according the sand pile experiment,φ≥2.55) conform to the negative power law,that means the non-uniform sand syste...