Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o...Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.展开更多
BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with ...BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions.展开更多
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert...(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle.展开更多
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ...Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.展开更多
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities ...In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1).展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining d...The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.展开更多
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap...Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.展开更多
Two-dimensional(2D) CrI_(3) is a ferromagnetic semiconductor with potential for applications in spintronics. However,its low Curie temperature(T_(c)) hinders realistic applications of CrI3. Based on first-principles c...Two-dimensional(2D) CrI_(3) is a ferromagnetic semiconductor with potential for applications in spintronics. However,its low Curie temperature(T_(c)) hinders realistic applications of CrI3. Based on first-principles calculations, 5d transition metal(TM) atom doping of CrI_(3)(TM@CrI_(3)) is a universally effective way to increase T_(c), which stems from the increased magnetic moment induced by doping with TM atoms. T_(c) of W@CrI_(3) reaches 254 K, nearly six times higher than that of the host CrI_(3). When the doping concentration of W atoms is increased to above 5.9%, W@CrI_(3) shows room-temperature ferromagnetism. Intriguingly, the large magnetic anisotropy energy of W@CrI_(3) can stabilize the long-range ferromagnetic order. Moreover, TM@CrI_(3) has a strong ferromagnetic stability. All TM@CrI_(3) change from a semiconductor to a halfmetal, except doping with Au atom. These results provide information relevant to potential applications of CrI_(3) monolayers in spintronics.展开更多
We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtain...We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.展开更多
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato...Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.展开更多
Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the...Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.展开更多
Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we hav...Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.展开更多
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of...We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.展开更多
As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatme...As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatment agents,has also become a hot spot of research.In this study,a high temperature resistant strong adsorption rigid blocking agent(QW-1)was prepared using KH570 modified silica,acrylamide(AM)and allyltrimethylammonium chloride(TMAAC).QW-1 has good thermal stability,average particle size of 1.46μm,water contact angle of 10.5.,has a strong hydrophilicity,can be well dispersed in water.The experimental results showed that when 2 wt%QW-1 was added to recipe A(4 wt%bentonite slurry+0.5 wt%DSP-1(filtration loss depressant)),the API filtration loss decreased from 7.8to 6.4 m L.After aging at 240.C,the API loss of filtration was reduced from 21 to 14 m L,which has certain performance of high temperature loss of filtration.At the same time,it is effective in sealing 80-100mesh and 100-120 mesh sand beds as well as 3 and 5μm ceramic sand discs.Under the same conditions,the blocking performance was superior to silica(5μm)and calcium carbonate(2.6μm).In addition,the mechanism of action of QW-1 was further investigated.The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer,thus preventing further intrusion of drilling fluid into the formation.展开更多
基金supported from Science and Technology Development Program of Jilin Province(Nos.20240101128JC,20230402058GH)National Natural Science Foundation of China(No.52130101).
文摘Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
基金supported by Faculty of MedicineChiang Mai University+2 种基金supported by the National Center for Advancing Translational SciencesNational Institutes of Healththrough grant number UL1 TR001860. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH。
文摘BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle.
基金financially supported by National Key Research and Development Program of China (2022YFB3804903, 2022YFB3804900)the National Natural Science Foundation of China (No. 52273052)+2 种基金the Fundamental Research Funds for the Central Universities (No. 2232023Y01)the Program of Shanghai Academic/Technology Research Leader (No. 21XD1420100)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (No. 21130750100)。
文摘Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金supported by the National Natural Science Foundation of China(Grant No.52278466)the Project of China Academy of Railway Sciences Co.,Ltd(Grant No.2023YJ194).The useful contribution and discussions from project partners are also acknowledged.
文摘In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1).
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
基金supported by the Science and Technology Project of the Headquarters of the State Grid Corporation of China(52199922001U).
文摘The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61975072 and 12174173)the Natural Science Foundation of Fujian Province,China (Grant Nos.2022H0023,2022J02047,ZZ2023J20,and 2022G02006)。
文摘Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
文摘Two-dimensional(2D) CrI_(3) is a ferromagnetic semiconductor with potential for applications in spintronics. However,its low Curie temperature(T_(c)) hinders realistic applications of CrI3. Based on first-principles calculations, 5d transition metal(TM) atom doping of CrI_(3)(TM@CrI_(3)) is a universally effective way to increase T_(c), which stems from the increased magnetic moment induced by doping with TM atoms. T_(c) of W@CrI_(3) reaches 254 K, nearly six times higher than that of the host CrI_(3). When the doping concentration of W atoms is increased to above 5.9%, W@CrI_(3) shows room-temperature ferromagnetism. Intriguingly, the large magnetic anisotropy energy of W@CrI_(3) can stabilize the long-range ferromagnetic order. Moreover, TM@CrI_(3) has a strong ferromagnetic stability. All TM@CrI_(3) change from a semiconductor to a halfmetal, except doping with Au atom. These results provide information relevant to potential applications of CrI_(3) monolayers in spintronics.
基金the National Natural Science Foundation of China(Grant Nos.12164032,11964026,and 12364010)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant Nos.2019MS01010,2022MS01014,and 2020BS01009)+1 种基金the Doctor Research Start-up Fund of Inner Mongolia Minzu University(Grant Nos.BS625 and BS439)the Basic Research Funds for Universities Directly under the Inner Mongolia Autonomous Region,China(Grant No.GXKY23Z029).
文摘We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.
文摘Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.
基金Project supported by the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0391)。
文摘Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2230401,U1930401,and 12004048)the National Key Research and Development Program of China (Grant No.2021YFB3501503)+1 种基金the Science Challenge Project (Grant No.TZ2018002)the Foundation of LCP。
文摘Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138).
文摘We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
基金supported by the National Natural Science Foundation of China (No.52074330,No.52288101)。
文摘As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatment agents,has also become a hot spot of research.In this study,a high temperature resistant strong adsorption rigid blocking agent(QW-1)was prepared using KH570 modified silica,acrylamide(AM)and allyltrimethylammonium chloride(TMAAC).QW-1 has good thermal stability,average particle size of 1.46μm,water contact angle of 10.5.,has a strong hydrophilicity,can be well dispersed in water.The experimental results showed that when 2 wt%QW-1 was added to recipe A(4 wt%bentonite slurry+0.5 wt%DSP-1(filtration loss depressant)),the API filtration loss decreased from 7.8to 6.4 m L.After aging at 240.C,the API loss of filtration was reduced from 21 to 14 m L,which has certain performance of high temperature loss of filtration.At the same time,it is effective in sealing 80-100mesh and 100-120 mesh sand beds as well as 3 and 5μm ceramic sand discs.Under the same conditions,the blocking performance was superior to silica(5μm)and calcium carbonate(2.6μm).In addition,the mechanism of action of QW-1 was further investigated.The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer,thus preventing further intrusion of drilling fluid into the formation.