期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究 被引量:1
1
作者 孙己龙 刘勇 +4 位作者 周黎伟 路鑫 侯小龙 王亚琼 王志丰 《图学学报》 CSCD 北大核心 2024年第5期1050-1061,共12页
为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面... 为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面向衬砌裂缝的检测模型DTD-YOLOv8。首先,通过引入DCNv2对YOLOv8主干卷积网络C2f进行融合以实现模型对裂缝形变特征的准确快速感知,同时采用Transformer Decoder对YOLOv8检测头进行替换以实现端到端框架内完整目标检测流程,从而消除因Anchor-free处理模式所带来的计算消耗。采用自建裂缝数据集对SSD,Faster-RCNN,RT-DETR,YOLOv3,YOLOv5,YOLOv8和DTD-YOLOv8的7种检测模型进行对比验证。结果表明:改进模型F1分数和mAP@50值分别为87.05%和89.58%;其中F1分数相较其他6种模型分别提高了14.16%,7.68%,1.55%,41.36%,8.20%和7.40%;mAP@50分别提高了28.84%,15.47%,1.33%,47.65%,10.14%和10.84%。改进模型参数量仅为RT-DETR的三分之一,检测单张图片的速度为16.01 ms,FPS为65.46帧每秒,对比其他模型检测速度得到提升。该模型在面向运营隧道裂缝检测任务需求时能够表现出高效的性能。 展开更多
关键词 隧道工程 目标检测 第2版可变形卷积网络 Transformer decoder 衬砌裂缝
在线阅读 下载PDF
基于3D注意力和金字塔解码器的目标跟踪算法
2
作者 符强 殷奇晨 +1 位作者 纪元法 任风华 《电光与控制》 北大核心 2025年第8期18-24,共7页
针对复杂场景下目标的快速移动、遮挡、非刚性形变和光照变化等问题,提出了一种基于3D注意力和金字塔解码器的目标跟踪算法。首先引入VGG-16神经网络并对其进行结构上的优化,以提高特征提取的效率和质量。其次通过引入3D注意力,增强了... 针对复杂场景下目标的快速移动、遮挡、非刚性形变和光照变化等问题,提出了一种基于3D注意力和金字塔解码器的目标跟踪算法。首先引入VGG-16神经网络并对其进行结构上的优化,以提高特征提取的效率和质量。其次通过引入3D注意力,增强了对关键特征的提取能力。然后使用深层语义融合模块,通过上采样融合特征信息,以达到对特征的精确表达。最后设计金字塔解码器提升模型在复杂场景下的鲁棒性。实验结果表明,在OTB100数据集上,相比基准算法,所提算法的成功率和跟踪精度分别提升了15.8%和16.2%。 展开更多
关键词 目标跟踪 孪生网络 注意力 特征融合 解码器
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割 被引量:1
3
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
水声网络基于优先级与可Zigzag解码的在线喷泉码
4
作者 杜秀娟 王玉杰 +1 位作者 柳秀秀 赵建 《计算机应用研究》 北大核心 2025年第3期895-902,共8页
水声网络(underwater acoustic network,UAN)具有长传播时延、高误码率、半双工通信等特性,这些特性严重影响了UAN中数据的可靠传输。而在线喷泉码具有在线控制、编解码复杂度低、码率自适应等诸多优势,在线喷泉码适合于保障UAN中数据... 水声网络(underwater acoustic network,UAN)具有长传播时延、高误码率、半双工通信等特性,这些特性严重影响了UAN中数据的可靠传输。而在线喷泉码具有在线控制、编解码复杂度低、码率自适应等诸多优势,在线喷泉码适合于保障UAN中数据的可靠传输。针对递归与限制反馈的在线喷泉码(recursive OFC with limited feedback,ROFC-LF)存在不理想覆盖和4元环问题导致略高的开销和频繁的反馈,提出适用于UAN的基于优先级与可Zigzag解码的ROFC-LF(priority-based and zigzag-decodable ROFC-LF,P-ZROFC-LF)。P-ZROFC-LF在建立阶段选取具有最高优先级的原始包进行编码直至所有原始包均参与编码。同时,引入可Zigzag解码编码,将无用编码包进行移位异或转换为有用编码包来提高解码性能。通过随机图理论,分析P-ZROFC-LF所需编码包数与原始包数之间的关系。理论分析与仿真结果表明,与大部分在线喷泉码相比,P-ZROFC-LF显著提高了反馈和开销性能。其中P-ZROFC-LF相比于ROFC-LF的反馈和开销分别减少了18%和0.0176,更适用于UAN。 展开更多
关键词 水声网络 在线喷泉码 可Zigzag解码 反馈 开销
在线阅读 下载PDF
基于CDoubleGAN的电网时序暂态数据生成
5
作者 张启飞 陈润泽 +2 位作者 张亶 叶瑞涛 梁秀波 《计算机工程与设计》 北大核心 2025年第1期159-165,共7页
为解决电力系统人工智能应用中样本数量不足的问题,对时序数据生成方法进行研究,提出一种CDoubleGAN模型。结合编解码器和两对生成器-鉴别器,采用ARFNN替代RNN解决Lipschitz连续性问题,实现使用Wasserstein距离对目标函数的稳定优化。... 为解决电力系统人工智能应用中样本数量不足的问题,对时序数据生成方法进行研究,提出一种CDoubleGAN模型。结合编解码器和两对生成器-鉴别器,采用ARFNN替代RNN解决Lipschitz连续性问题,实现使用Wasserstein距离对目标函数的稳定优化。将数据类别标签融入模型中,生成特定类别的样本。在IEEE-39系统的实验结果表明,CDoubleGAN在类别生成上的准确度超过98%,与TimeGAN相比,生成的数据与原数据具有更高的相似度,更好保留了数据原始特性以应用于数据生产。 展开更多
关键词 人工智能 深度学习 电力系统 暂态稳定 数据生成 编解码器 生成对抗网络 时序数据
在线阅读 下载PDF
基于改进自编码解码网络的轨道不平顺评价方法
6
作者 杨建伟 王小慧 +3 位作者 刘佩珊 杨飞 王金海 孙培文 《铁道学报》 北大核心 2025年第2期131-144,共14页
目前无砟轨道平顺性的评价方法只适用于中短波长,难以满足大范围动态复杂线路的变化需求。如果仅依靠单一波长轨检数据评价轨道状态,会导致其他波长局部波动或潜在病害不能被有效识别的现象。通过挖掘不同波长下的轨道不平顺信息,将深... 目前无砟轨道平顺性的评价方法只适用于中短波长,难以满足大范围动态复杂线路的变化需求。如果仅依靠单一波长轨检数据评价轨道状态,会导致其他波长局部波动或潜在病害不能被有效识别的现象。通过挖掘不同波长下的轨道不平顺信息,将深度学习方法与现有评价方法相融合,提出改进的自编码解码高斯生成对抗神经网络(DAGGAN)及自适应轨道质量指数方法(DAE_TQI),实现对轨道状态的实时监控。为验证方法的准确性和有效性,将其与其他方法进行对比,验证DAGGAN模型在识别单几何不平顺时的有效性,同时DAE_TQI方法可综合评价无砟轨道状态,结果可作为高速铁路轨道养护维修的理论依据。 展开更多
关键词 轨道不平顺 轨道质量指数 自编码解码网络 高斯对抗网络 自适应轨道质量指数
在线阅读 下载PDF
低密度奇偶校验码正则化神经网络归一化最小和译码算法
7
作者 周华 周鸣 张立康 《电子与信息学报》 北大核心 2025年第5期1486-1493,共8页
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致... 低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到RNNMS,RVC-SNNMS和RCVSNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10-6时,RNNMS,RVC-SNNMS和RCV-SNNMS算法相较于NNMS,VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB,0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB,0.51 dB和0.22 dB的信噪比增益。 展开更多
关键词 低密度奇偶校验码 神经网络 归一化最小和译码 过拟合 正则化
在线阅读 下载PDF
基于卷积内SWCS的时间卷积网络对MI-EEG解码
8
作者 付荣荣 祝悦 +1 位作者 李林玉 路斌 《计量学报》 北大核心 2025年第6期910-916,共7页
传统的机器学习方法中脑电信号通常需要经过繁琐的预处理和特征工程才能进行解码。如何构建一个能够快速、可靠地解码运动想象脑电信号的端到端深度学习网络,成为当前运动想象脑电信号解码研究的关键问题。因此,在结合卷积内滑动窗口裁... 传统的机器学习方法中脑电信号通常需要经过繁琐的预处理和特征工程才能进行解码。如何构建一个能够快速、可靠地解码运动想象脑电信号的端到端深度学习网络,成为当前运动想象脑电信号解码研究的关键问题。因此,在结合卷积内滑动窗口裁剪策略(sliding window cropping strategy,SWCS)和时间卷积网络(temporal convolutional network,TCN)的基础上,提出一种新的卷积内SWCS的时间卷积网络,并使用该网络对运动想象脑电信号进行识别研究。该网络利用二维卷积提取脑电信号的浅层特征,使用卷积内SWCS将时间序列划分为多个时间窗口,然后将二维卷积提取的脑电信号浅层特征输送到TCN网络中提取时间序列中更高级的时间特征。在第Ⅳ届脑机接口竞赛的数据集上的分类结果表明,卷积内SWCS的时间卷积网络的分类效果优秀。 展开更多
关键词 脑电信号 卷积内SWCS 运动想象 时间卷积网络 信号解码 脑机接口
在线阅读 下载PDF
基于双编码器双解码器GAN的低剂量CT降噪模型
9
作者 上官宏 任慧莹 +3 位作者 张雄 韩兴隆 桂志国 王燕玲 《计算机应用》 北大核心 2025年第2期624-632,共9页
近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器... 近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器双解码器生成对抗网络(DualED-GAN)的低剂量CT降噪模型。首先,提出由一对编解码器构成伪影像素级特征提取通道,用于估计LDCT中的伪影噪声;其次,提出由另外一对编解码器构成伪影掩码信息提取通道,用于估计伪影的强度和位置信息;最后,采用伪影图像质量标签图辅助估计伪影的掩码信息,可以为伪影像素级特征提取通道提供补充特征,进而提高GAN降噪网络对伪影噪声分布强度的敏感性。实验结果表明,在mayo测试集上与次优模型DESD-GAN(Dual-Encoder-Single-Decoder based Generative Adversarial Network)相比,所提模型的平均峰值信噪比(PSNR)提高了0.3387 dB,平均结构相似性度(SSIM)提高了0.0028。可见,所提模型在伪影抑制、结构保留与模型鲁棒性方面均有更好的表现。 展开更多
关键词 低剂量计算机断层成像 生成对抗网络 编码器 解码器 降噪
在线阅读 下载PDF
基于残差注意力编-解码网络的道路提取方法
10
作者 齐然然 帕力旦·吐尔逊 +1 位作者 汤泊川 钱育蓉 《计算机工程与科学》 北大核心 2025年第1期119-129,共11页
针对遥感图像中相似形状地物对道路提取造成干扰的问题,提出基于残差注意力的编-解码网络RAED-Net。RAED-Net的编码网络采用改进的通道注意力残差模块来提取输入图像的局部特征和全局特征,自适应地调整通道特征映射的权重,提高对重要通... 针对遥感图像中相似形状地物对道路提取造成干扰的问题,提出基于残差注意力的编-解码网络RAED-Net。RAED-Net的编码网络采用改进的通道注意力残差模块来提取输入图像的局部特征和全局特征,自适应地调整通道特征映射的权重,提高对重要通道信息的关注,减少背景干扰。在解码网络中引入条形卷积模块,提高上采样过程中跨通道信息交互以及对道路边缘细节信息的恢复能力,提升复杂环境中道路提取结果的准确度。在2个不同类型公开数据集上的对比实验结果表明,RAED-Net能够准确提取道路信息,缓解了相似地物对道路提取带来的干扰问题,取得综合最优结果且参数量最少。尤其在全像素标注、复杂性较高的mini DGRD数据集上的F1、IoU和mIoU分别比次优网络提高了3.53%,5.76%和2.21%。 展开更多
关键词 遥感图像 道路提取 编-解码网络 通道注意力
在线阅读 下载PDF
基于RCED-DQN的滚动轴承故障诊断方法研究
11
作者 李家声 王亭强 +3 位作者 周杰 马萍 张宏立 苑茹 《组合机床与自动化加工技术》 北大核心 2025年第2期188-193,199,共7页
为提升滚动轴承设备故障诊断中传统卷积神经网络模型的特征提取能力和决策能力,增强诊断模型的准确率和泛化性,提出了基于深度强化学习DQN网络模型的RCED-DQN(residual convolutional encoder decoder-DQN,RCED-DQN)故障诊断框架。框架... 为提升滚动轴承设备故障诊断中传统卷积神经网络模型的特征提取能力和决策能力,增强诊断模型的准确率和泛化性,提出了基于深度强化学习DQN网络模型的RCED-DQN(residual convolutional encoder decoder-DQN,RCED-DQN)故障诊断框架。框架将一维卷积网络和残差编解码器结合,进行无监督预训练拓宽网络结构,挖掘了网络深层特征,解决了深度强化学习网络难以训练、模型难以收敛的问题;然后,采用预训练后的编码器作为特征提取器,与所设计的特征分类器相连接构建DQN算法的Q网络。通过智能体与环境的交互学习出最佳诊断策略,实现了滚动轴承端到端的故障诊断。实验结果证明,融合残差编解码器的深度Q网络在实验数据集下有效地提取故障特征,提高了诊断决策能力;在不同方法、不同工况下的对比实验结果也验证了所提方法的准确性、有效性和泛化性。 展开更多
关键词 深度强化学习 故障诊断 残差编解码器 DQN网络
在线阅读 下载PDF
基于编解码网络的生猪骨架提取方法研究
12
作者 王泽华 徐爱俊 +2 位作者 周素茵 叶俊华 夏芳 《计算机应用与软件》 北大核心 2025年第4期181-188,共8页
针对生猪骨架提取难度大、精度低、耗时长等问题,提出一种基于编解码网络的生猪骨架提取方法。该文构建关键点热力图生成模型,将ResNet50残差网络和U-Net语义分割网络相结合,搭建编码-解码网络结构并引入注意力机制,以提高尾、蹄等小目... 针对生猪骨架提取难度大、精度低、耗时长等问题,提出一种基于编解码网络的生猪骨架提取方法。该文构建关键点热力图生成模型,将ResNet50残差网络和U-Net语义分割网络相结合,搭建编码-解码网络结构并引入注意力机制,以提高尾、蹄等小目标关键点的特征提取精度;在生成关键点热力图的同时预测关键点偏移量,弥补反算关键点原始位置时的精度损失,再利用霍夫投票机制对二者进行加权聚合,最终映射得到生猪骨架。实验结果表明,骨架提取准确率为85.27%。相较于ResNet50残差网络,在耗时相近的情况下,准确率提高了22.67个百分点。该研究为生猪骨架提取提供了一种新的方法,可为进一步开展生猪行为研究提供技术参考。 展开更多
关键词 骨架提取 关键点检测 生猪 注意力机制 特征提取 编解码网络
在线阅读 下载PDF
基于FCNN的极化码分区译码算法研究
13
作者 罗颖 李晓记 王家明 《光通信技术》 北大核心 2025年第3期79-82,共4页
为了降低极化码神经网络译码器在训练阶段的维度限制,设计了一种基于全连接神经网络(FCNN)的串行抵消(SC)分区译码器,通过将极化码译码树划分为两个区域,并分别使用不同参数设置的FCNN进行处理,从而减少对大规模训练数据的需求。仿真结... 为了降低极化码神经网络译码器在训练阶段的维度限制,设计了一种基于全连接神经网络(FCNN)的串行抵消(SC)分区译码器,通过将极化码译码树划分为两个区域,并分别使用不同参数设置的FCNN进行处理,从而减少对大规模训练数据的需求。仿真结果表明:在加性高斯白噪声信道中,当信噪比为1~5 dB时,FCNN-SC译码器性能接近于SC译码算法;当信噪比为1.5~3 dB时,FCNN-SC译码器相较于FCNN译码器有0.5 dB左右的编码增益,且训练阶段所需的数据集更小,仅为FCNN译码器的一半左右。 展开更多
关键词 极化码 串行抵消译码算法 全连接神经网络 神经网络译码器 深度学习
在线阅读 下载PDF
编码器-解码器结构的刀具磨损状态预测研究
14
作者 刘本刚 吴文江 +2 位作者 赵丹 王裴岩 彭春杨 《小型微型计算机系统》 北大核心 2025年第6期1530-1536,共7页
针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性... 针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性能最优,其中Transformer-BiGRU组合模型F1值达69.61%,显著优于GS-XGBoost(58.01%)、Attention-CNN(57.65%)等方法,研究表明基于编码器-解码器的刀具状态预测模型在航空钛合金复杂切削工况下具有显著优势,未来可通过模型优化和扩充样本数据进一步提升其性能. 展开更多
关键词 编码器-解码器结构 刀具磨损状态预测 TRANSFORMER 双向循环神经网络 航空钛合金高效加工
在线阅读 下载PDF
CNN和双向编码解码LSTM融合的起重机械健康预测方法
15
作者 陈宇豪 杨正益 文俊浩 《重庆大学学报》 北大核心 2025年第6期74-83,共10页
针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long ... 针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long short-term memory with encoder-decoder,ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入-输出时间步长尺寸情况下对数据集切分重组,将处理后数据集输入到卷积神经网络,提取主要特征,得到多维矩阵。采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型,达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;预测损失最多降低1.411%,最少降低1.230%,实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。 展开更多
关键词 起重机械 健康预测 双向长短时循环神经网络 卷积神经网络 编码解码器
在线阅读 下载PDF
CT图像肾肿瘤分割的三维轴向Transformer模型
16
作者 张金龙 吴敏 孙玉宝 《计算机工程与科学》 北大核心 2025年第4期677-685,共9页
自动分割CT图像序列中肾脏及其肿瘤区域能够为放化疗计划提供定量参考依据。当前基于Transformer的肾肿瘤分割模型得到了广泛关注,特别是与U-Net模型及其变体结合使用。现有的基于Transformer的分割网络通常在单个切片局部窗口内进行特... 自动分割CT图像序列中肾脏及其肿瘤区域能够为放化疗计划提供定量参考依据。当前基于Transformer的肾肿瘤分割模型得到了广泛关注,特别是与U-Net模型及其变体结合使用。现有的基于Transformer的分割网络通常在单个切片局部窗口内进行特征学习,对切片内空间信息以及切片间轴向信息表示存在不足。针对这一问题,提出了三维轴向Transformer模块,将3个维度的复杂耦合关联分解为交替的2个轴向注意力,融合了切片内部以及切片之间的轴向体关联信息。以三维轴向Transformer模块为基础,融合多尺度特征与残差学习方式,构建了二阶段的肾脏肿瘤分割编解码网络ATrans UNet,在KiTS19数据集上,肾脏和肾脏肿瘤分割结果的Dice相似性分别是96.43%和81.04%,平均Dice得分对比2D-Unet提升了8.40%,对比3D-Unet提升了4.84%。 展开更多
关键词 CT图像序列 肾肿瘤三维分割 三维轴向Transformer 二阶段编解码网络
在线阅读 下载PDF
基于自编码器的非线性气动力辨识及非线性颤振分析
17
作者 梅瀚雨 廖海黎 王昌将 《西南交通大学学报》 北大核心 2025年第3期599-607,共9页
为实现非线性动力系统的非线性气动力辨识和非线性颤振计算,提出一种基于神经网络方法和运动方程数值求解方法的自编码器模型.以5∶1矩形断面为研究对象,通过节段模型自由振动风洞试验,详细测试系统非线性阻尼的振幅依存性和非线性颤振... 为实现非线性动力系统的非线性气动力辨识和非线性颤振计算,提出一种基于神经网络方法和运动方程数值求解方法的自编码器模型.以5∶1矩形断面为研究对象,通过节段模型自由振动风洞试验,详细测试系统非线性阻尼的振幅依存性和非线性颤振稳态振幅响应,明确该断面在不同折算风速下稳态振幅的唯一性;基于试验数据对所提出的自编码器模型进行训练,获取精准描述与位移和速度相关的非线性气动力编码器模型,实现不同动力参数下5∶1矩形断面非线性颤振运动时程分析.研究结果表明:所提出的自编码器模型能够仅依赖自由振动风洞试验而无需测力或测压试验,即可精确辨识包含奇数次高次谐波分量的非线性气动力时程;能够精确复现不同初始条件下断面非线性颤振运动时程和不同折算风速下的稳态振幅响应,扭转稳态振幅最大误差不超过5%,平均误差为1.15%;具有较高的拓展性,可为后续相关研究提供参考. 展开更多
关键词 非线性颤振 风洞试验 神经网络 编码器 解码器
在线阅读 下载PDF
一种基于改进编码器-解码器的阵列稳健波束形成方法
18
作者 刘子雄 徐艳红 +2 位作者 崔灿 王安义 范旭慧 《空军工程大学学报》 北大核心 2025年第1期50-58,共9页
针对实际场景中不可避免存在的阵列误差所带来的阵列天线旁瓣电平抬高、零点移位甚至方向图畸变等问题,提出了一种基于改进编码器-解码器的阵列稳健波束形成方法。该方法基于一维卷积神经网络(1D-CNN)和人工神经网络(ANN)分别设计了编... 针对实际场景中不可避免存在的阵列误差所带来的阵列天线旁瓣电平抬高、零点移位甚至方向图畸变等问题,提出了一种基于改进编码器-解码器的阵列稳健波束形成方法。该方法基于一维卷积神经网络(1D-CNN)和人工神经网络(ANN)分别设计了编码器和解码器,其中编码器和解码器分别起到阵列综合和阵列分析的功能。首先训练解码器,通过在该训练过程中考虑阵列误差,建立实际阵列的激励权矢量与阵列方向图之间的映射关系;然后训练编码器,建立期望方向图与产生该方向图所需激励权矢量的映射关系,该过程需联合已训练好的解码器,不断迭代,最终求得最优激励权矢量。为验证该方法的有效性,开展了存在阵列误差情况下16阵元的波束综合,实现了-20 dB低旁瓣下的-45 dB单零点和-40 dB多零点综合,实验结果均证明了该方法的有效性。 展开更多
关键词 波束形成 编码器-解码器 低旁瓣 神经网络 阵列误差
在线阅读 下载PDF
面向交通流预测的时空编码器-解码器模型
19
作者 张锦 皮煜 +3 位作者 孙程 魏叶华 余飞 姚卫 《国防科技大学学报》 北大核心 2025年第3期173-182,共10页
为了解决许多交通流预测研究方法不能全面地挖掘交通数据中的动态隐藏相关性的问题,研究了动态时空变化特征,提出了一个基于编码器-解码器的交通预测模型。在模型中,编码器和解码器都主要由多头时空注意力机制组成,在两者中间加入了连... 为了解决许多交通流预测研究方法不能全面地挖掘交通数据中的动态隐藏相关性的问题,研究了动态时空变化特征,提出了一个基于编码器-解码器的交通预测模型。在模型中,编码器和解码器都主要由多头时空注意力机制组成,在两者中间加入了连接注意力机制,以分析路网时空相关性。模型还使用时空嵌入编码与自适应图卷积结合构成的动态嵌入模块来分析节点的动态和静态信息。在两个真实数据集上的实验,证明了该时空模型在长短期流量预测的效果优于其他方法。因此,时空编码器-解码器模型能有效处理复杂的时空序列,提升交通流预测的准确性。 展开更多
关键词 交通流预测 图卷积神经网络 注意力机制 编码器-解码器
在线阅读 下载PDF
融合条形卷积和Transformer的风机叶片裂纹检测研究
20
作者 黄启昀 李黄强 +2 位作者 舒征宇 李欣 付军军 《现代电子技术》 北大核心 2025年第14期123-128,共6页
针对风机叶片早期出现的浅色、细小裂纹难以识别问题,提出一种融合条形卷积和Transformer的风机叶片裂纹检测方法。首先基于不同方向条形卷积构建多方向裂纹特征增强模块,在不同尺度下增强网络对裂纹特征的提取能力;其次,在Transformer... 针对风机叶片早期出现的浅色、细小裂纹难以识别问题,提出一种融合条形卷积和Transformer的风机叶片裂纹检测方法。首先基于不同方向条形卷积构建多方向裂纹特征增强模块,在不同尺度下增强网络对裂纹特征的提取能力;其次,在Transformer中引入非线性无激活网络,以降低Transformer在利用高分辨率图像进行检测任务时的计算复杂度;最后结合Transformer与条形卷积的优势,构建一种四级对称编码-解码器网络,完成叶片裂纹缺陷检测任务。测试结果表明,该方法在自制数据集上的mPA值和mIoU值分别达到86.87%和79.54%,且网络的训练速率达到13.24幅/s,说明风机叶片裂纹检测方法在检测性能与检测速率上均具有良好的效果。 展开更多
关键词 风机叶片 裂纹检测 多尺度特征 条形卷积 TRANSFORMER 编码-解码器网络
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部