We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a...We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.展开更多
In order to solve problems in high dynamic environment, a frequency-locked loop (FLL) assisted phase-locked loop (PLL) is put forward for carrier tracking. On the basis of the analysis of discriminators, the total...In order to solve problems in high dynamic environment, a frequency-locked loop (FLL) assisted phase-locked loop (PLL) is put forward for carrier tracking. On the basis of the analysis of discriminators, the total phase error of the tracking loop is analyzed and a general error expression is derived. By using linearization and Jaffe-Rechtin coefficients, the performance of a special first order FLL-assisted second order PLL is analyzed to get a closed expression. Analysis results and simula- tions show that there exist an optimal FLL loop bandwidth and a optimal PLL loop bandwidth which can make the phase jitter much less than that when the PLL is used alone.展开更多
An S-band frequency synthesizer for a stepped-frequency radar is presented. This frequen- cy synthesizer is based on a direct digital synthesizer ( DDS ) -driven wideband phase-locked loop (PLL) architecture which...An S-band frequency synthesizer for a stepped-frequency radar is presented. This frequen- cy synthesizer is based on a direct digital synthesizer ( DDS ) -driven wideband phase-locked loop (PLL) architecture which can achieve low spurious noise and rapid frequency hopping simultaneous- ly. The mechanism of introducing high level spurs by the images of DDS digital to analog convertor (DAC) output is analyzed. A novel DDS frequency planning method is proposed to ensure low col- ored noise within the entire bandwidth. The designed output frequency range is 3. 765 -4. 085 GHz, and the step size is 5 MHz with frequency agility of less than 1 μs. Measured results demonstrate that the average spurious free dynamic range (SFDR) is about 64 dBc in a 320 MHz bandwidth.展开更多
This paper proposes a novel Gm-C loop filter instead of a conventional passive loop filter used in a phase-locked loop. The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence ...This paper proposes a novel Gm-C loop filter instead of a conventional passive loop filter used in a phase-locked loop. The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence the process variations of passive elements of resistance R and capacitance C can be overcome and the chip area is greatly reduced. Furthermore, the MASH 1-1-1 sigma-delta (ZA) modulator is adopted for performing the fractional division number and hence improves the phase noise as well. Measured results show that the locked phase noise is -114.1 dBc/Hz with lower Gm-C bandwidth and -111.7 dBm/C with higher Gm-C bandwidth at 1 MHz offset from carrier of 5.68 GHz. Including pads and built-in Gm-C filter, the chip area of the proposed frequency synthesizer is 1.06 mm2. The output power is -8.69 dBm at 5.68 CHz and consumes 56 mW with an off-chip buffer from 1.8-V supply voltage.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61307128)the National Basic Research Program of China(GrantNo.2010CB327505)+1 种基金the Specialized Research Found for the Doctoral Program of Higher Education of China(Grant No.20131101120027)the Basic Research Foundation of Beijing Institute of Technology of China(Grant No.20120542015)
文摘We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.
文摘In order to solve problems in high dynamic environment, a frequency-locked loop (FLL) assisted phase-locked loop (PLL) is put forward for carrier tracking. On the basis of the analysis of discriminators, the total phase error of the tracking loop is analyzed and a general error expression is derived. By using linearization and Jaffe-Rechtin coefficients, the performance of a special first order FLL-assisted second order PLL is analyzed to get a closed expression. Analysis results and simula- tions show that there exist an optimal FLL loop bandwidth and a optimal PLL loop bandwidth which can make the phase jitter much less than that when the PLL is used alone.
基金Supported by the Fund of National Defense Industry Innova-tive Team(231)
文摘An S-band frequency synthesizer for a stepped-frequency radar is presented. This frequen- cy synthesizer is based on a direct digital synthesizer ( DDS ) -driven wideband phase-locked loop (PLL) architecture which can achieve low spurious noise and rapid frequency hopping simultaneous- ly. The mechanism of introducing high level spurs by the images of DDS digital to analog convertor (DAC) output is analyzed. A novel DDS frequency planning method is proposed to ensure low col- ored noise within the entire bandwidth. The designed output frequency range is 3. 765 -4. 085 GHz, and the step size is 5 MHz with frequency agility of less than 1 μs. Measured results demonstrate that the average spurious free dynamic range (SFDR) is about 64 dBc in a 320 MHz bandwidth.
文摘This paper proposes a novel Gm-C loop filter instead of a conventional passive loop filter used in a phase-locked loop. The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence the process variations of passive elements of resistance R and capacitance C can be overcome and the chip area is greatly reduced. Furthermore, the MASH 1-1-1 sigma-delta (ZA) modulator is adopted for performing the fractional division number and hence improves the phase noise as well. Measured results show that the locked phase noise is -114.1 dBc/Hz with lower Gm-C bandwidth and -111.7 dBm/C with higher Gm-C bandwidth at 1 MHz offset from carrier of 5.68 GHz. Including pads and built-in Gm-C filter, the chip area of the proposed frequency synthesizer is 1.06 mm2. The output power is -8.69 dBm at 5.68 CHz and consumes 56 mW with an off-chip buffer from 1.8-V supply voltage.