The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c...The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.展开更多
Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of ...Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of climate change on cotton production and the use of genomic approaches to increase stress tolerance in cotton.This paper discusses the effects of rising temperatures,changing precipitation patterns,and extreme weather events on cotton yield.It then explores various genomic strategies,such as genomic selection and marker-assisted selection,which can be used to develop stress-tolerant cotton varieties.The review emphasizes the need for interdisciplinary research efforts and policy interventions to mitigate the adverse effects of climate change on cotton production.Furthermore,this paper presents advanced prospects,including genomic selection,gene editing,multi-omics integration,highthroughput phenotyping,genomic data sharing,climate-informed breeding,and phenomics-assisted genomic selection,for enhancing stress resilience in cotton.Those innovative approaches can assist cotton researchers and breeders in developing highly resilient cotton varieties capable of withstanding the challenges posed by climate change,ensuring the sustainable and prosperous future of cotton production.展开更多
Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitu...Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitute to facilitate the cleaner production of low-grade molybdenum bismuth ore in this study.The effects of calcium hypochlorite on molybdenite,bismuthinite,and pyrite were investigated through micro-flotation,flotation kinetics,batch flotation,Fourier transform infrared(FTIR)spectra,scanning electron microscopy energy dispersion spectra(SEM-EDS),and inductively coupled plasma-optical emission spectra(ICP-OES).The flotation tests results showed that calcium hypochlorite could selectively depress bismuthinite and pyrite.In comparison to sodium sulfide,calcium hypochlorite not only improved the flotation indicators for molybdenum and bismuth concentrates but also reduced the dosage of flotation reagents.Moreover,the chemical oxygen demand(COD)of tailings wastewater significantly decreased when using calcium hypochlorite as a depressant.Mechanism research revealed that the use of calcium hypochlorite as a depressant led to BiOCl precipitation on bismuthinite,which hindered the attachment of the collector.In summary,calcium hypochlorite serves as a more efficient and environmentally friendly depressant compared to sodium sulfide in the industrial production processes of low-grade molybdenum bismuth ore.展开更多
In addition to the negative consequences of climate change,sucking pest complexes severely limited cotton yields in the recent past.Although the damage caused by bollworms was much reduced by utilizing Bt cotton,the e...In addition to the negative consequences of climate change,sucking pest complexes severely limited cotton yields in the recent past.Although the damage caused by bollworms was much reduced by utilizing Bt cotton,the emergence of sucking pests(such as aphids,thrips,and whiteflies)poses a serious threat to cotton production,as they reduce lint yield by 40%–60%finally.Additionally,these pests also caused yield losses by spreading viral diseases.Promoting innovative and thorough control methods is necessary to counter the threat posed by these sucking pests.Such initiatives necessitate a multifaceted strategy that combines next-generation breeding technology and pest management techniques to produce novel cotton cultivars that are resistant to sucking pests.The discovery of novel genes and regulatory factors linked to cotton’s resistance to sucking pests will be possible by the combination of next-generation breeding technologies and omics approaches and employing those tools on special resistant donors.Continuous research aimed at understanding the genetic basis of insect resistance and improving integrated pest management(IPM)techniques is crucial to the sustainability and resilience of cotton cropping systems.To this end,a sustainable and viable strategy to protect cotton fields from sucking pests is outlined.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and ...Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.展开更多
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori...Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.展开更多
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum...In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites.展开更多
In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of ...In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of retention time,leaching temperature,concentration of glycine ligand,liquid-solid ratio(L/S),pH,stirring speed,and H_(2)O_(2) dosage on the leaching efficiency of valuable metals and the dissolution of impurities were investigated.When the spent LIBs were leached in 3 mol/L glycine aqueous solution with pH of 8,L/S of 5 mL:1 g and H_(2)O_(2) dosage of 5 vol.%at 90℃and stirring speed of 400 r/min for 3 h,lithium,cobalt,nickel,and manganese recoveries were 96.31%,83.18%,91.56%,and 31.16%,respectively,but Ca,Al,Fe,and Cu were almost insoluble.Meanwhile,the kinetic study showed that the activation energies for the leaching of Li,Co,Ni,and Mn were all in the range of 45−61 kJ/mol.The results indicate that the leaching process is all controlled by chemical reactions.展开更多
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic...Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.展开更多
High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy allo...High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys.展开更多
The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) ...The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visi...Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans.展开更多
Trade credit,as an effective tool for integrating and coordinating material,information,and financial flows in supply chain management,is becoming increasingly widespread.We explore how a manufacturer can design optim...Trade credit,as an effective tool for integrating and coordinating material,information,and financial flows in supply chain management,is becoming increasingly widespread.We explore how a manufacturer can design optimal trade credit contracts when a risk-averse retailer hides its sales cost information(adverse selection)and selling effort level(moral hazard).We develop incentive models for a risk-averse supply chain when adverse selection and moral hazard coexist,which are then compared with the results under single information asymmetry(moral hazard).Moreover,we analyze the effects of private information and risk-aversion coefficient on contract parameters,selling effort level and the profit or utility of the supply chain.The study shows that when the degree of retailer’s risk aversion is within a certain range,reasonable trade credit contracts designed by the manufacturer can effectively induce the retailer to report its real sales cost and encourage it to exert appropriate effort.Furthermore,we find that the optimal trade credit period,optimal transfer payment,and retailer’s optimal sales effort level under dual information asymmetry are less than those under single information asymmetry.Numerical analysis are conducted to demonstrate the effects of the parameters on decisions and profits.展开更多
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ...This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.展开更多
文摘The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.
基金supported by major national R&D projects(No.2023ZD04040-01)National Natural Science Foundation of China(No.5201101621)National Key R&D Plan(No.2022YFD1200304).
文摘Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of climate change on cotton production and the use of genomic approaches to increase stress tolerance in cotton.This paper discusses the effects of rising temperatures,changing precipitation patterns,and extreme weather events on cotton yield.It then explores various genomic strategies,such as genomic selection and marker-assisted selection,which can be used to develop stress-tolerant cotton varieties.The review emphasizes the need for interdisciplinary research efforts and policy interventions to mitigate the adverse effects of climate change on cotton production.Furthermore,this paper presents advanced prospects,including genomic selection,gene editing,multi-omics integration,highthroughput phenotyping,genomic data sharing,climate-informed breeding,and phenomics-assisted genomic selection,for enhancing stress resilience in cotton.Those innovative approaches can assist cotton researchers and breeders in developing highly resilient cotton varieties capable of withstanding the challenges posed by climate change,ensuring the sustainable and prosperous future of cotton production.
基金Projects(2022YFC2904504-4,2019YFC0408300)supported by the National Key R&D Program of ChinaProject(HB202302)supported by the Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control,China+1 种基金Project(51634009)supported by the National Natural Science Foundation of ChinaProject(B14034)supported by the National“111”Project,China。
文摘Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitute to facilitate the cleaner production of low-grade molybdenum bismuth ore in this study.The effects of calcium hypochlorite on molybdenite,bismuthinite,and pyrite were investigated through micro-flotation,flotation kinetics,batch flotation,Fourier transform infrared(FTIR)spectra,scanning electron microscopy energy dispersion spectra(SEM-EDS),and inductively coupled plasma-optical emission spectra(ICP-OES).The flotation tests results showed that calcium hypochlorite could selectively depress bismuthinite and pyrite.In comparison to sodium sulfide,calcium hypochlorite not only improved the flotation indicators for molybdenum and bismuth concentrates but also reduced the dosage of flotation reagents.Moreover,the chemical oxygen demand(COD)of tailings wastewater significantly decreased when using calcium hypochlorite as a depressant.Mechanism research revealed that the use of calcium hypochlorite as a depressant led to BiOCl precipitation on bismuthinite,which hindered the attachment of the collector.In summary,calcium hypochlorite serves as a more efficient and environmentally friendly depressant compared to sodium sulfide in the industrial production processes of low-grade molybdenum bismuth ore.
基金M/s.RASI Seeds Pvt.Ltd.,Attur,Tamil Nadu,India for their generous financial assistance in setting up a MAS study in cotton for genetic improvement of sucking pest resistance.
文摘In addition to the negative consequences of climate change,sucking pest complexes severely limited cotton yields in the recent past.Although the damage caused by bollworms was much reduced by utilizing Bt cotton,the emergence of sucking pests(such as aphids,thrips,and whiteflies)poses a serious threat to cotton production,as they reduce lint yield by 40%–60%finally.Additionally,these pests also caused yield losses by spreading viral diseases.Promoting innovative and thorough control methods is necessary to counter the threat posed by these sucking pests.Such initiatives necessitate a multifaceted strategy that combines next-generation breeding technology and pest management techniques to produce novel cotton cultivars that are resistant to sucking pests.The discovery of novel genes and regulatory factors linked to cotton’s resistance to sucking pests will be possible by the combination of next-generation breeding technologies and omics approaches and employing those tools on special resistant donors.Continuous research aimed at understanding the genetic basis of insect resistance and improving integrated pest management(IPM)techniques is crucial to the sustainability and resilience of cotton cropping systems.To this end,a sustainable and viable strategy to protect cotton fields from sucking pests is outlined.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
基金Foundation item:Project(2023YFC2909000) supported by the National Key R&D Program for Young Scientists,ChinaProject(2023JH3/10200010) supported by the Excellent Youth Natural Science Foundation of Liaoning Province,China+3 种基金Project (XLYC2203167) supported by the Liaoning Revitalization Talents Program,ChinaProject(RC231175) supported by the Mid-career and Young Scientific and Technological Talents Program of Shenyang,ChinaProject(2023A03003-2) supported by the Key Special Program of Xinjiang,ChinaProject(N2301026) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.
文摘Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.
基金Project(2022J318)supported by the Natural Science Foundation of Ningbo,ChinaProject(2021A1515110525)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(2022QN05023)supported by the Inner Mongolia Natural Science Foundation Youth Project,China。
文摘In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites.
基金Projects(51974137,52274299)supported by the National Natural Science Foundation of ChinaProject(2023M733190)supported by the China Postdoctoral Science Foundation。
文摘In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of retention time,leaching temperature,concentration of glycine ligand,liquid-solid ratio(L/S),pH,stirring speed,and H_(2)O_(2) dosage on the leaching efficiency of valuable metals and the dissolution of impurities were investigated.When the spent LIBs were leached in 3 mol/L glycine aqueous solution with pH of 8,L/S of 5 mL:1 g and H_(2)O_(2) dosage of 5 vol.%at 90℃and stirring speed of 400 r/min for 3 h,lithium,cobalt,nickel,and manganese recoveries were 96.31%,83.18%,91.56%,and 31.16%,respectively,but Ca,Al,Fe,and Cu were almost insoluble.Meanwhile,the kinetic study showed that the activation energies for the leaching of Li,Co,Ni,and Mn were all in the range of 45−61 kJ/mol.The results indicate that the leaching process is all controlled by chemical reactions.
文摘Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.
基金Project supported by ClassⅢPeak Discipline of Shanghai-Materials Science and Engineering(High-Energy Beam Intelligent Processing and Green Manufacturing),China。
文摘High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys.
基金Project(52204378)supported by the National Natural Science Foundation of China。
文摘The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
基金supported by Natural Science Foundation of Shandong Province(ZR2022MB049)National Natural Science Foundation of China(22078174)。
文摘Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans.
基金supported by the Plan Project of Shanghai Philosophy and Social Science(2017BGL014)the National Natural Science Foundation of China(71832001)the Fundamental Research Funds for the Central Universities(2232020B-04,2232018H-07).
文摘Trade credit,as an effective tool for integrating and coordinating material,information,and financial flows in supply chain management,is becoming increasingly widespread.We explore how a manufacturer can design optimal trade credit contracts when a risk-averse retailer hides its sales cost information(adverse selection)and selling effort level(moral hazard).We develop incentive models for a risk-averse supply chain when adverse selection and moral hazard coexist,which are then compared with the results under single information asymmetry(moral hazard).Moreover,we analyze the effects of private information and risk-aversion coefficient on contract parameters,selling effort level and the profit or utility of the supply chain.The study shows that when the degree of retailer’s risk aversion is within a certain range,reasonable trade credit contracts designed by the manufacturer can effectively induce the retailer to report its real sales cost and encourage it to exert appropriate effort.Furthermore,we find that the optimal trade credit period,optimal transfer payment,and retailer’s optimal sales effort level under dual information asymmetry are less than those under single information asymmetry.Numerical analysis are conducted to demonstrate the effects of the parameters on decisions and profits.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272257,12102292,12032006)the special fund for Science and Technology Innovation Teams of Shanxi Province(Nos.202204051002006).
文摘This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.