为了更有效地对心音按成分进行分割,实验采用一种基于Teager-Kaise能量算子(Teager-Kaise Energy Operator,TKEO)以及多包络特征融合的心音分割算法。首先,利用多尺度小波软阈值对PCG信号进行去噪,然后进行TKEO运算,由于TKEO对瞬时能量...为了更有效地对心音按成分进行分割,实验采用一种基于Teager-Kaise能量算子(Teager-Kaise Energy Operator,TKEO)以及多包络特征融合的心音分割算法。首先,利用多尺度小波软阈值对PCG信号进行去噪,然后进行TKEO运算,由于TKEO对瞬时能量变化极其敏感,可以有效提取包络峰值,得到TKEO信号。其次,对TKEO信号提取归一化香农能量包络和维奥拉积分包络,计算出两者包络与TKEO信号之间的皮尔逊相关系数,根据相关关系进行融合。然后,用区间搜索法对包络进行峰值搜索,并且对搜索结果的方差进行比较。最后,根据S1和S2的最大持续时间消除伪峰。用PhysioNet-2016数据集对所提算法进行测试,实验结果显示平均精确度为0.922,证实了该算法能较有效地对心音信号进行分割,为临床环境下采集的心音信号的特征提取与分析提供了新方法。展开更多
针对傅里叶分解方法存在过度分解、运算时间长等问题,提出了一种基于循环频谱包络的经验傅里叶分解(CEEFD)算法,并将该算法运用到滚动轴承故障诊断中。首先,对信号进行了快速傅里叶变换(FFT),获得了信号的频谱,对傅里叶频谱进行了循环包...针对傅里叶分解方法存在过度分解、运算时间长等问题,提出了一种基于循环频谱包络的经验傅里叶分解(CEEFD)算法,并将该算法运用到滚动轴承故障诊断中。首先,对信号进行了快速傅里叶变换(FFT),获得了信号的频谱,对傅里叶频谱进行了循环包络,得到了包络曲线,减少了无用极值点的个数,抑制了噪声对分量的干扰;然后,采用改进的局部最大最小值(local max min)分割技术,对频谱包络曲线进行了频带分割;最后,构建了零相位滤波器,采用逆快速傅里叶变换(IFFT)对每个频带进行了信号重构,得到了若干个瞬时频率且具有物理意义的单分量信号;通过对仿真信号和滚动轴承实测信号的分析,并将其与经验模态分解(EMD)、经验小波变换(EWT)、傅里叶分解方法(FDM)、变分模态分解(VMD)和经验傅里叶分解(EFD)进行了实验对比验证。研究结果表明:采用CEEFD方法获得的单分量包含了更准确的故障特征信息,验证了CEEFD方法的有效性,CEEFD方法可用于轴承的故障诊断;相对于上述方法,CEEFD方法具有更高的准确精度和更强的抗噪声干扰能力。展开更多
文摘为了更有效地对心音按成分进行分割,实验采用一种基于Teager-Kaise能量算子(Teager-Kaise Energy Operator,TKEO)以及多包络特征融合的心音分割算法。首先,利用多尺度小波软阈值对PCG信号进行去噪,然后进行TKEO运算,由于TKEO对瞬时能量变化极其敏感,可以有效提取包络峰值,得到TKEO信号。其次,对TKEO信号提取归一化香农能量包络和维奥拉积分包络,计算出两者包络与TKEO信号之间的皮尔逊相关系数,根据相关关系进行融合。然后,用区间搜索法对包络进行峰值搜索,并且对搜索结果的方差进行比较。最后,根据S1和S2的最大持续时间消除伪峰。用PhysioNet-2016数据集对所提算法进行测试,实验结果显示平均精确度为0.922,证实了该算法能较有效地对心音信号进行分割,为临床环境下采集的心音信号的特征提取与分析提供了新方法。
文摘针对傅里叶分解方法存在过度分解、运算时间长等问题,提出了一种基于循环频谱包络的经验傅里叶分解(CEEFD)算法,并将该算法运用到滚动轴承故障诊断中。首先,对信号进行了快速傅里叶变换(FFT),获得了信号的频谱,对傅里叶频谱进行了循环包络,得到了包络曲线,减少了无用极值点的个数,抑制了噪声对分量的干扰;然后,采用改进的局部最大最小值(local max min)分割技术,对频谱包络曲线进行了频带分割;最后,构建了零相位滤波器,采用逆快速傅里叶变换(IFFT)对每个频带进行了信号重构,得到了若干个瞬时频率且具有物理意义的单分量信号;通过对仿真信号和滚动轴承实测信号的分析,并将其与经验模态分解(EMD)、经验小波变换(EWT)、傅里叶分解方法(FDM)、变分模态分解(VMD)和经验傅里叶分解(EFD)进行了实验对比验证。研究结果表明:采用CEEFD方法获得的单分量包含了更准确的故障特征信息,验证了CEEFD方法的有效性,CEEFD方法可用于轴承的故障诊断;相对于上述方法,CEEFD方法具有更高的准确精度和更强的抗噪声干扰能力。