期刊文献+
共找到24,327篇文章
< 1 2 250 >
每页显示 20 50 100
Semantic segmentation of camouflage objects via fusing reconstructed multispectral and RGB images
1
作者 Feng Huang Gonghan Yang +5 位作者 Jing Chen Yixuan Xu Jingze Su Guimin Huang Shu Wang Wenxi Liu 《Defence Technology(防务技术)》 2025年第8期324-337,共14页
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du... Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing. 展开更多
关键词 Camouflage object detection Reconstructed multispectral image(MSI) Unmanned aerial vehicle(UAV) Semantic segmentation Remote sensing
在线阅读 下载PDF
An air combat maneuver pattern extraction based on time series segmentation and clustering analysis
2
作者 Zhifei Xi Yingxin Kou +2 位作者 Zhanwu Li Yue Lv You Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期149-162,共14页
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me... Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy. 展开更多
关键词 Maneuver pattern extraction Data mining Fuzzy segmentation Selective ensemble clustering
在线阅读 下载PDF
A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM
3
作者 Jiaxu Li Guangyao Han +1 位作者 Shuai Chang Xiaomei Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期339-351,共13页
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil... With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission. 展开更多
关键词 Semantic segmentation Sonar image transmission Learning-based compression
在线阅读 下载PDF
Drishti Paint 3.2:a new open-source tool for both 2D and 3D segmentation
4
作者 WANG Meng-Jun Ajay LIMAYE LU Jing 《古脊椎动物学报(中英文)》 CSCD 北大核心 2024年第4期313-320,共8页
X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread appl... X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies. 展开更多
关键词 X-ray computed tomography(CT) 2D and 3D segmentation 3D reconstruction Drishti Paint
在线阅读 下载PDF
Color-texture based unsupervised segmentation using JSEG with fuzzy connectedness 被引量:2
5
作者 Zheng Yuanjie Yang Jie Zhou Yue Wang Yuzhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期213-219,共7页
Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment im... Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment image correctly. Enlightened from segmentation based on fuzzy theories, soft class-map is constracted to solve that problem. The definitions of values and other related ones are adjusted according to the soft class-map. With more detailed values obtained from soft class map, more color distribution information is preserved. Experiments on a synthetic image and many other color images illustrate that JSEG with soft class-map can solve efficiently the problem that in a region there may exist color gradual variation in a smooth transition. It is a more robust method especially for images which haven' t been heavily blurred near boundaries of underlying regions. 展开更多
关键词 unsupervised segmentation color segmentation color texture segmentation fuzzy method.
在线阅读 下载PDF
Fast interactive segmentation algorithm of image sequences based on relative fuzzy connectedness 被引量:1
6
作者 Tian Chunna Gao Xinbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期750-755,共6页
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg... A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction. 展开更多
关键词 fuzzy connectedness interactive image segmentation image-sequences segmentation multiple objects segmentation fast algorithm.
在线阅读 下载PDF
Fast segmentation approach for SAR image based on simple Markov random field 被引量:8
7
作者 Xiaogang Lei Ying Li Na Zhao Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期31-36,共6页
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S... Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach. 展开更多
关键词 SAR image segmentation simple Markov random field coarse segmentation maximum a posterior iterated condition mode.
在线阅读 下载PDF
基于Segmental-DTW的无监督行为序列分割 被引量:9
8
作者 吴晓婕 胡占义 吴毅红 《软件学报》 EI CSCD 北大核心 2008年第9期2285-2292,共8页
行为序列分割是行为分析与识别中最初始、最基础的一个步骤.提出了一种无监督的行为序列分割算法,主要步骤包括:(1)采用等长有重叠的时间窗口对视频序列进行粗分割;(2)将粗分割的视频段两两作比较,通过Segmental-DTW算法分割出两个视频... 行为序列分割是行为分析与识别中最初始、最基础的一个步骤.提出了一种无监督的行为序列分割算法,主要步骤包括:(1)采用等长有重叠的时间窗口对视频序列进行粗分割;(2)将粗分割的视频段两两作比较,通过Segmental-DTW算法分割出两个视频段中最相似的行为片断;(3)将行为片断的相似性转化为邻接图表示,通过图聚类方法对分割出的行为片断进行聚类.该算法采用了从粗到细的分割思想,能够准确地分割出视频序列中大量出现的行为的片断,并将相同行为的片断聚为一类.分割结果可以直接用于行为建模和识别.实验结果也表明了分割出的行为片断具有较好的代表性和有效性. 展开更多
关键词 行为序列分割 无监督法 segmental.DTW 聚类
在线阅读 下载PDF
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
9
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
SegHMC:一种基于Segmental HMM模型的顺式调控模块识别算法
10
作者 郭海涛 霍红卫 于强 《自动化学报》 EI CSCD 北大核心 2016年第11期1718-1731,共14页
顺式调控模块(Cis-regulatory module,CRM)在真核生物基因的转录调控中起着重要作用,识别顺式调控模块是当前计算生物学的一个重要课题.虽然当前有许多计算方法用于识别顺式调控模块,但识别准确率仍有待进一步提高.将顺式调控模块的多... 顺式调控模块(Cis-regulatory module,CRM)在真核生物基因的转录调控中起着重要作用,识别顺式调控模块是当前计算生物学的一个重要课题.虽然当前有许多计算方法用于识别顺式调控模块,但识别准确率仍有待进一步提高.将顺式调控模块的多种特征信息结合在一起,有助于提高识别顺式调控模块的准确率.基于此,本文提出了一种识别顺式调控模块的算法Seg HMC(Segmental HMM model for discovery of cis-regulatory module).该算法建立了一种关于顺式调控模块识别问题的Segmental HMM模型,进一步扩展了顺式调控模块调控结构(或调控语法)的表示,不仅将顺式调控模块表示为模体(Motif)的组合,还进一步将模体共同出现的频率、模体顺序偏好以及顺式调控模块中相邻模体间的距离分布等特征引入到顺式调控模块的调控语法中.在模拟数据集和真实生物数据集上的实验结果表明,本文方法识别顺式调控模块的准确率显著优于当前的主要方法. 展开更多
关键词 基因的转录调控 模体 segmentAL HMM 顺式调控模块识别
在线阅读 下载PDF
Infrared image segmentation method based on 2D histogram shape modification and optimal objective function 被引量:8
11
作者 Songtao Liu Donghua Gao Fuliang Yin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期528-536,共9页
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the... In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification. 展开更多
关键词 infrared image segmentation 2D histogram Otsu maximum entropy maximum correlation minimum Renyi entropy.
在线阅读 下载PDF
An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation 被引量:13
12
作者 GAO Yang LI Xu +1 位作者 DONG Ming LI He-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期107-120,共14页
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich... A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm. 展开更多
关键词 artificial bee colony local search swarm intelligence image segmentation
在线阅读 下载PDF
Clustering-driven watershed adaptive segmentation of bubble image 被引量:7
13
作者 周开军 阳春华 +1 位作者 桂卫华 许灿辉 《Journal of Central South University》 SCIE EI CAS 2010年第5期1049-1057,共9页
In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy ... In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy c means(FCM) algorithm. Through the attributes of size and shape pattern spectrum,the optimal morphological structuring element was determined.According to the optimal parameters,some image noises were removed with an improved area opening and closing by reconstruction operation,which consist of image regional markers,and the bubbles were finely separated from each other by watershed transform.The experimental results show that the structural element can be determined adaptively by shape and size pattern spectrum,and the froth image is segmented accurately.Compared with other froth image segmentation method,the proposed method achieves much high accuracy,based on which,the bubble size and shape features are extracted effectively. 展开更多
关键词 FLOTATION froth image adaptive segmentation pattern spectrum morphological feature
在线阅读 下载PDF
End-to-end dilated convolution network for document image semantic segmentation 被引量:8
14
作者 XU Can-hui SHI Cao CHEN Yi-nong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1765-1774,共10页
Semantic segmentation is a crucial step for document understanding.In this paper,an NVIDIA Jetson Nano-based platform is applied for implementing semantic segmentation for teaching artificial intelligence concepts and... Semantic segmentation is a crucial step for document understanding.In this paper,an NVIDIA Jetson Nano-based platform is applied for implementing semantic segmentation for teaching artificial intelligence concepts and programming.To extract semantic structures from document images,we present an end-to-end dilated convolution network architecture.Dilated convolutions have well-known advantages for extracting multi-scale context information without losing spatial resolution.Our model utilizes dilated convolutions with residual network to represent the image features and predicting pixel labels.The convolution part works as feature extractor to obtain multidimensional and hierarchical image features.The consecutive deconvolution is used for producing full resolution segmentation prediction.The probability of each pixel decides its predefined semantic class label.To understand segmentation granularity,we compare performances at three different levels.From fine grained class to coarse class levels,the proposed dilated convolution network architecture is evaluated on three document datasets.The experimental results have shown that both semantic data distribution imbalance and network depth are import factors that influence the document’s semantic segmentation performances.The research is aimed at offering an education resource for teaching artificial intelligence concepts and techniques. 展开更多
关键词 semantic segmentation document images deep learning NVIDIA jetson nano
在线阅读 下载PDF
Electromagnetic Design of a Switched Reluctance Motor With Segmental Rotors and Full-pitch Windings 被引量:9
15
作者 CHEN Xiaoyuan DENG Zhiquan +1 位作者 XU Peilin FAN Na 《中国电机工程学报》 EI CSCD 北大核心 2011年第36期I0010-I0010,245,共1页
Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.I... Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.In this paper,the authors have been studying electromagnetic design of this motor. 展开更多
关键词 switched reluctance motors(SRM) full-pitch winding segmental rotor electromagnetic design pole-arc coeficient
在线阅读 下载PDF
Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm 被引量:9
16
作者 姚畅 陈后金 《Journal of Central South University》 SCIE EI CAS 2009年第4期640-646,共7页
According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorit... According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorithm was proposed for automated retinal blood vessels segmentation. Firstly, 2D Gaussian matched filter was used to enhance the retinal images and simplified PCNN was employed to segment the blood vessels by firing neighborhood neurons. Then, fast 2D-Otsu algorithm was introduced to search the best segmentation results and iteration times with less computation time. Finally, the whole vessel network was obtained via analyzing the regional connectivity. Experiments implemented on the public Hoover database indicate that this new method gets a 0.803 5 true positive rate and a 0.028 0 false positive rate on an average. According to the test results, compared with Hoover algorithm and method of PCNN and 1D-Otsu, the proposed method shows much better performance. 展开更多
关键词 blood vessel segmentation pulse coupled neural network (PCNN) OTSU NEURON
在线阅读 下载PDF
Multi-resolution image segmentation based on Gaussian mixture model 被引量:5
17
作者 Tang Yinggan Liu Dong Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期870-874,共5页
Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio... Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness. 展开更多
关键词 image segmentation MULTI-RESOLUTION Ganssian mixture model.
在线阅读 下载PDF
LPI radar signal detection based on the combination of FFT and segmented autocorrelation plus PAHT 被引量:4
18
作者 Chengzhi Yang Zhiwei Xiong +1 位作者 Yang Guo Bolin Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期890-899,共10页
This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of li... This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of linear frequency modulation, phase code, and frequency code. Firstly, it improves the coherent integration of LPI radar signals by adding the periodicity of the ambiguity function. Then, it develops a frequency domain detection method based on fast Fourier transform (FFT) and segmented autocorrelation function to detect signals without features of linear frequency modulation by virtue of the distribution characteristics of noise signals in the frequency domain. Finally, this paper gives a verification of the performance of the method for different signal-to-noise ratios by conducting simulation experiments, and compares the method with existing ones. Additionally, this method is characterized by the straightforward calculation and high real-time performance, which is conducive to better detecting all kinds of LPI radar signals. 展开更多
关键词 low probability of intercept (LPI) signal detection period ambiguity function segmented autocorrelation CHANNELIZATION
在线阅读 下载PDF
Color-texture segmentation using JSEG based on Gaussian mixture modeling 被引量:4
19
作者 Wang Yuzhong Yang Jie Zhou Yue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期24-29,共6页
An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift ... An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift (AMS) based clustering is used for nonparametric clustering of image data set. The clustering results are used to construct Gaussian mixture modelling (GMM) of image data for the calculation of soft J value. The region growing algorithm used in JSEG is then applied in segmenting the image based on the multiscale soft J-images. Experiments show that the synergism of JSEG and the soft classification based on AMS based clustering and GMM overcomes the limitations of JSEG successfully and is more robust. 展开更多
关键词 color image segmentation JSEG adaptive mean shift based dustering Gaussian mixture modeling soft J-value.
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
20
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部