DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) is a new plant regulator which can be used to regulate growth and development for crops. Experiments on maize seedlings were conducted in the growth chamber to st...DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) is a new plant regulator which can be used to regulate growth and development for crops. Experiments on maize seedlings were conducted in the growth chamber to study the effects of foliar applied DCPTA. The plant pots were placed in a completely randomized design with three replicates. The maize seedlings were treated with 0 mg·L-1 (control), 20 mg·L-1 and 40 mg·L-1 DCPTA solution. The effects of DCPTA on the photosynthetic characteristics (photosynthesis, stomata conductance, intercellular CO2, and transpiration rate), related physiological characteristics (contents of soluble sugar and starch), chlorophyll fluorescence parameters (Fo, Fro, Fv/Fm, Fv/Fo, qP, and qN) and the weight of dry matter in maize seedling were studied. The results showed that DCPTA enhanced photosynthesis of maize seedling. In general, photosynthetic rate in leaves was significantly promoted through spraying DCPTA solution, and 40 rag" L~ DCPTA was found to be the best concentration for maize. The relationship between stomata conductance and transpiration rate in maize leaves could be described as linear. With regard to the chlorophyll fluorescence parameters, our fmdings showed that 40 mg·L-1 DCPTA in maize seedling caused an increase in Fm, Fv/Fm, Fm/Fo, qP and a decrease in Fo and qN at some time points checked. It is suggested that DCPTA increased photosynthetic rate by raising both the content of chlorophyll and activities of PSII and the contents of sugar and starch. Compared with the control, the treated maize seedling caused an increase in plant height, root length, shoot dry mass, root dry mass, or the total (root plus shoot) dry mass.展开更多
Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under lo...Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under low-temperature treatment 18℃/ 9℃, and 16℃/7℃, and it decreased in earlier stage after increased under 14℃/5℃. WUE was increased in earlier stage and after stabilized. The order of the three varieties of cold resistance were Jinyu 5〉Xingken 3〉Jidan 198. They could make self-regulation through adjusting Gs, Tr, Ci and WUE.展开更多
基金Supported by the National Natural Science Foundation of China(31201164)the Program of Science and Technology of Education Department of Heilongjiang Province(12521036)+2 种基金China Postdoctoral Science Foundation(2012M511434)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z12036)the Doctoral Starting Up Foundation of Northeast Agricultural University(2012RCB01)
文摘DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) is a new plant regulator which can be used to regulate growth and development for crops. Experiments on maize seedlings were conducted in the growth chamber to study the effects of foliar applied DCPTA. The plant pots were placed in a completely randomized design with three replicates. The maize seedlings were treated with 0 mg·L-1 (control), 20 mg·L-1 and 40 mg·L-1 DCPTA solution. The effects of DCPTA on the photosynthetic characteristics (photosynthesis, stomata conductance, intercellular CO2, and transpiration rate), related physiological characteristics (contents of soluble sugar and starch), chlorophyll fluorescence parameters (Fo, Fro, Fv/Fm, Fv/Fo, qP, and qN) and the weight of dry matter in maize seedling were studied. The results showed that DCPTA enhanced photosynthesis of maize seedling. In general, photosynthetic rate in leaves was significantly promoted through spraying DCPTA solution, and 40 rag" L~ DCPTA was found to be the best concentration for maize. The relationship between stomata conductance and transpiration rate in maize leaves could be described as linear. With regard to the chlorophyll fluorescence parameters, our fmdings showed that 40 mg·L-1 DCPTA in maize seedling caused an increase in Fm, Fv/Fm, Fm/Fo, qP and a decrease in Fo and qN at some time points checked. It is suggested that DCPTA increased photosynthetic rate by raising both the content of chlorophyll and activities of PSII and the contents of sugar and starch. Compared with the control, the treated maize seedling caused an increase in plant height, root length, shoot dry mass, root dry mass, or the total (root plus shoot) dry mass.
基金Supported by the Science and Technology Foundation(2008BADB3B09-03)
文摘Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under low-temperature treatment 18℃/ 9℃, and 16℃/7℃, and it decreased in earlier stage after increased under 14℃/5℃. WUE was increased in earlier stage and after stabilized. The order of the three varieties of cold resistance were Jinyu 5〉Xingken 3〉Jidan 198. They could make self-regulation through adjusting Gs, Tr, Ci and WUE.