为了解决故障先验概率估算不准的问题,提出了基于最大熵的故障先验概率的计算模型.该模型以相关的先验信息作为最大概率估计的约束条件,并通过拉格朗日函数,将故障先验概率估算问题转化成无约束优化问题.为了实现对无约束优化问题的快...为了解决故障先验概率估算不准的问题,提出了基于最大熵的故障先验概率的计算模型.该模型以相关的先验信息作为最大概率估计的约束条件,并通过拉格朗日函数,将故障先验概率估算问题转化成无约束优化问题.为了实现对无约束优化问题的快速求解,提出了一种基于最速下降法和牛顿法的混合梯度算法;并且,针对大规模系统中故障变量过多的情况,依据系统分解的原则,将高维故障空间分解为多个低维故障空间,给出了低维故障空间求解的快速计算方法.通过最大熵方法和故障平均间隔(MTTF,Mean Time To Failure)方法的结果比较,证明最大熵方法更具准确性.展开更多
红外热图像目标区域(Region of Interest,ROI)提取对故障检测、目标跟踪等有着重要意义.为解决红外热图像干扰多、需人工标记及准确率低等问题,提出一种基于多模态特征图融合的红外热图像ROI提取算法.通过对比度、熵及梯度特征构建多模...红外热图像目标区域(Region of Interest,ROI)提取对故障检测、目标跟踪等有着重要意义.为解决红外热图像干扰多、需人工标记及准确率低等问题,提出一种基于多模态特征图融合的红外热图像ROI提取算法.通过对比度、熵及梯度特征构建多模态特征图并进行区域填充,实现ROI提取.将新算法应用于实际采集的光伏太阳能板图像中.结果表明,新算法具有平均查准率高(93. 0553%)、平均查全率高(90. 2841%)、F1指数和J指数均优于图割法,人工标记少等优点,可有效用于红外热图像ROI提取.展开更多
文摘为了解决故障先验概率估算不准的问题,提出了基于最大熵的故障先验概率的计算模型.该模型以相关的先验信息作为最大概率估计的约束条件,并通过拉格朗日函数,将故障先验概率估算问题转化成无约束优化问题.为了实现对无约束优化问题的快速求解,提出了一种基于最速下降法和牛顿法的混合梯度算法;并且,针对大规模系统中故障变量过多的情况,依据系统分解的原则,将高维故障空间分解为多个低维故障空间,给出了低维故障空间求解的快速计算方法.通过最大熵方法和故障平均间隔(MTTF,Mean Time To Failure)方法的结果比较,证明最大熵方法更具准确性.
文摘红外热图像目标区域(Region of Interest,ROI)提取对故障检测、目标跟踪等有着重要意义.为解决红外热图像干扰多、需人工标记及准确率低等问题,提出一种基于多模态特征图融合的红外热图像ROI提取算法.通过对比度、熵及梯度特征构建多模态特征图并进行区域填充,实现ROI提取.将新算法应用于实际采集的光伏太阳能板图像中.结果表明,新算法具有平均查准率高(93. 0553%)、平均查全率高(90. 2841%)、F1指数和J指数均优于图割法,人工标记少等优点,可有效用于红外热图像ROI提取.