In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the tempera...In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.展开更多
In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thi...In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832702)the National Natural Science Foundation of China(Grant No.90916027)
文摘In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.
文摘In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites.