This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorith...A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent...This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent to track the active leader and it is proved that the proposed control scheme enables the consensus to be obtained when the adjacency topology is fixed/switched. Simulation results show effectiveness of the proposed theoretical analysis.展开更多
Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency s...Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.展开更多
This paper deals with the consensus problem of multi-agent systems with second-order dynamics. The objective is to design algorithms such that all agents will have same positions and velocities. First, a reference mod...This paper deals with the consensus problem of multi-agent systems with second-order dynamics. The objective is to design algorithms such that all agents will have same positions and velocities. First, a reference model based consensus algorithm is proposed. It is proved that the consensus can be achieved if the communication graph has a spanning tree. Different from most of the consensus algorithms proposed in the literature, the parameters of the control laws are different among agents. Therefore, each agent can design its control law independently. Secondly, it gives a consensus algorithm for the case that the velocities of the agents are not available. Thirdly, the effectiveness of the input delay and the communication delay is considered. It shows that consensus can be achieved if the input delay of every agent is smaller than a bound related to parameters in its control law. Finally, some numerical examples are given to illustrate the proposed results.展开更多
In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material ...In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.展开更多
The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the sec...The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra.展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple...To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.展开更多
The second-order distorted wave Born aPl6roximation (DWBA) method is employed to investigate the triple differen- tial cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at exces...The second-order distorted wave Born aPl6roximation (DWBA) method is employed to investigate the triple differen- tial cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.展开更多
Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes re...Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes relate to the velocity of the small elementary scatterers on sea surface profiles. Therefore, modeling Doppler spectra from the ocean requires an accurate description of the sea surface motion. The profile of nonlinear Gerstners sea surface shows verticalskewness of sea waves, it is sharper at the crest and flatter at the trough than linear waves, and its maximum slope position is closer to the crest than to the trough. Furthermore, the horizontal component of the small elementary scatterers orbit velocity on the sea surface, which yields noticeable influence on Doppler spectra, can be obtained conveniently by Gerstners sea surface model. In this study the characteristics of Doppler spectra of backscattered fields from time-varying Gerstners sea surface are investigated and the dependences of the Doppler frequency and the Doppler bandwidth on the parameters, such as the wind speed, the radar frequency, the incident angle, etc. are discussed. It is shown that the Doppler bandwidth of microwave scattered fields from Gerstners sea surface is considerably broadened. For the case of high frequency backscattered fields, the values of the higher-order spectrum peaks are larger than those obtained by linear sea surface.展开更多
The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protoc...The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protocols based on sampled-data control are proposed so that each agent can track the time-varying reference state of the virtual leader. By using the delay decomposition approach, the augmented matrix method, and the frequency domain analysis, necessary and sufficient conditions are obtained, which guarantee that the bounded consensus tracking is realized. Furthermore, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.展开更多
The standard distorted wave Born approximation (DWBA) method has been extended to second-order Born amplitude in order to describe the multiple interactions between the projectile and the atomic target. Second-order...The standard distorted wave Born approximation (DWBA) method has been extended to second-order Born amplitude in order to describe the multiple interactions between the projectile and the atomic target. Second-order DWBA calculations have been preformed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for the alkali target potassium at excess energies of 6 eV-60 eV. Compared with the previous first-order DWBA calculations, the present theoretical model improves the degree of agreement with experiments, especially for the backward scattering angle region of TDCS. This indicates that the present second-order Born term is capable of giving a reasonable correction to the DWBA model in studying coplanar symmetric (e, 2e) problems in low and intermediate energy ranges.展开更多
We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, ...We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.展开更多
This paper demonstrates the second-order nonlinear hyperpolarisability γ of all-trans-β-carotene in different solvents by linear spectroscopic technique that is based on resonance Raman scattering and UV-VIS (Ultra...This paper demonstrates the second-order nonlinear hyperpolarisability γ of all-trans-β-carotene in different solvents by linear spectroscopic technique that is based on resonance Raman scattering and UV-VIS (Ultraviolet-visible) absorption spectroscopy. Owing to the two-level model well describing the link that exists between the resonance Raman scattering and stimulated Raman scattering, the stimulated Raman polarisability αR can be calculated through the two-photon resonance system. The value of γ of all-trans-β-carotene in carbon bisulfide solution is 6.435×10^-33 esu (1 esu of resistance = 8.98755×10^11Ω) that is close to the true value, because the solution of all-trans-β-carotene in carbon bisulfide satisfies the rigid resonance Raman scattering condition. This method is expected to be worthy of applications to measure the second-order nonlinear hyperpolaxisability of a conjugate organic molecule.展开更多
This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of ext...This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.展开更多
In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the tempera...In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.展开更多
Two second-order consensus algorithms with a time-vary reference state without relative velocity measurements are proposed in a directed topology. Necessary and sufficient conditions are presented to ensure second-ord...Two second-order consensus algorithms with a time-vary reference state without relative velocity measurements are proposed in a directed topology. Necessary and sufficient conditions are presented to ensure second-order consensus. It is shown that all the coupling strengths and the ei- genvalues of the Laplacian matrix play important roles in reaching consensus. Specially when all non- zero eigenvalues of the Laplacian matrix are real, consensus can be achieved if and only if the cou- pling strengths are positive and the directed topology has a spanning tree for the first algorithm, and for the second one, consensus can be achieved if and only if the coupling strengths are positive. Fi- nally, simulation examples are presented to verify the theoretical analysis.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金the National Science Foundation(60574075, 60674108)
文摘A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金supported by the National Natural Science Foundation of China(11301492)the Ph.D.Programs Foundation of Ministry of Education of China(20130145120005)the TianYuan Special Funds of the National Natural Science Foundation of China(11226134)
文摘This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent to track the active leader and it is proved that the proposed control scheme enables the consensus to be obtained when the adjacency topology is fixed/switched. Simulation results show effectiveness of the proposed theoretical analysis.
基金the National Key R&D Program of China(Grant No.2016YFF0200202)the Maintenance and Reformation Program for the Major Science and Technology Fundamental Devices of the Chinese Academy of Sciences(Grant No.DSS-WXGZ-2020-0005)the Foundation for Western Young Scholars,China(Grant No.XAB2018A06)。
文摘Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.
基金supported by the National Natural Science Foundation of China (Grant No. 60904022)
文摘This paper deals with the consensus problem of multi-agent systems with second-order dynamics. The objective is to design algorithms such that all agents will have same positions and velocities. First, a reference model based consensus algorithm is proposed. It is proved that the consensus can be achieved if the communication graph has a spanning tree. Different from most of the consensus algorithms proposed in the literature, the parameters of the control laws are different among agents. Therefore, each agent can design its control law independently. Secondly, it gives a consensus algorithm for the case that the velocities of the agents are not available. Thirdly, the effectiveness of the input delay and the communication delay is considered. It shows that consensus can be achieved if the input delay of every agent is smaller than a bound related to parameters in its control law. Finally, some numerical examples are given to illustrate the proposed results.
文摘In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404255)the Doctor Foundation of Education Ministry of China(Grant No.20130201120013)
文摘The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra.
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
基金supported by Sichuan Youth Science and Technology Innovation Research Team Project(No.2015TD0022)the Talents Project of Sichuan University of Science and Engineering(No.2017RCL11 and No.2017RCL10)the first batch of science and technology plan key R&D project of Sichuan province(No.2017GZ0068)
文摘To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.
基金supported by the National Natural Science Foundation of China(Grant No.11174066)
文摘The second-order distorted wave Born aPl6roximation (DWBA) method is employed to investigate the triple differen- tial cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40906088)the National Natural Science Foundation of China (Grant No. 60971067)Specialised Research Fund for the Doctoral Program of Higher Education (Grant No. 200804231021)
文摘Backscattered fields from one-dimensional time-varying Gerstners sea surface are calculated utilising the secondorder small slope approximation. It is well known that spectral properties of the backscattered echoes relate to the velocity of the small elementary scatterers on sea surface profiles. Therefore, modeling Doppler spectra from the ocean requires an accurate description of the sea surface motion. The profile of nonlinear Gerstners sea surface shows verticalskewness of sea waves, it is sharper at the crest and flatter at the trough than linear waves, and its maximum slope position is closer to the crest than to the trough. Furthermore, the horizontal component of the small elementary scatterers orbit velocity on the sea surface, which yields noticeable influence on Doppler spectra, can be obtained conveniently by Gerstners sea surface model. In this study the characteristics of Doppler spectra of backscattered fields from time-varying Gerstners sea surface are investigated and the dependences of the Doppler frequency and the Doppler bandwidth on the parameters, such as the wind speed, the radar frequency, the incident angle, etc. are discussed. It is shown that the Doppler bandwidth of microwave scattered fields from Gerstners sea surface is considerably broadened. For the case of high frequency backscattered fields, the values of the higher-order spectrum peaks are larger than those obtained by linear sea surface.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60874053 and 61034006)
文摘The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protocols based on sampled-data control are proposed so that each agent can track the time-varying reference state of the virtual leader. By using the delay decomposition approach, the augmented matrix method, and the frequency domain analysis, necessary and sufficient conditions are obtained, which guarantee that the bounded consensus tracking is realized. Furthermore, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174066)
文摘The standard distorted wave Born approximation (DWBA) method has been extended to second-order Born amplitude in order to describe the multiple interactions between the projectile and the atomic target. Second-order DWBA calculations have been preformed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for the alkali target potassium at excess energies of 6 eV-60 eV. Compared with the previous first-order DWBA calculations, the present theoretical model improves the degree of agreement with experiments, especially for the backward scattering angle region of TDCS. This indicates that the present second-order Born term is capable of giving a reasonable correction to the DWBA model in studying coplanar symmetric (e, 2e) problems in low and intermediate energy ranges.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)the National Basic Research Program of China(Grant No.2012CB025904)the State Key Laboratory of Science and Engineering Computing and the Center for High Performance Computing of Northwestern Polytechnical University,China
文摘We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.
基金Project supported by the National Natural Science Foundation of China (Gant Nos. 10774057 and 10974067)
文摘This paper demonstrates the second-order nonlinear hyperpolarisability γ of all-trans-β-carotene in different solvents by linear spectroscopic technique that is based on resonance Raman scattering and UV-VIS (Ultraviolet-visible) absorption spectroscopy. Owing to the two-level model well describing the link that exists between the resonance Raman scattering and stimulated Raman scattering, the stimulated Raman polarisability αR can be calculated through the two-photon resonance system. The value of γ of all-trans-β-carotene in carbon bisulfide solution is 6.435×10^-33 esu (1 esu of resistance = 8.98755×10^11Ω) that is close to the true value, because the solution of all-trans-β-carotene in carbon bisulfide satisfies the rigid resonance Raman scattering condition. This method is expected to be worthy of applications to measure the second-order nonlinear hyperpolaxisability of a conjugate organic molecule.
基金supported by the National High Technology Research and Development Program of China (Grant Nos. 2007AA041104,2007AA041105 and 2007AA04Z163)
文摘This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832702)the National Natural Science Foundation of China(Grant No.90916027)
文摘In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.
基金Supported by the National Natural Science Foundation of China(61074031)
文摘Two second-order consensus algorithms with a time-vary reference state without relative velocity measurements are proposed in a directed topology. Necessary and sufficient conditions are presented to ensure second-order consensus. It is shown that all the coupling strengths and the ei- genvalues of the Laplacian matrix play important roles in reaching consensus. Specially when all non- zero eigenvalues of the Laplacian matrix are real, consensus can be achieved if and only if the cou- pling strengths are positive and the directed topology has a spanning tree for the first algorithm, and for the second one, consensus can be achieved if and only if the coupling strengths are positive. Fi- nally, simulation examples are presented to verify the theoretical analysis.