期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
1
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测 被引量:1
2
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(ARIMA) 广义的自回归条件异方差模型(GARCH) 门控循环单元(GRU)
在线阅读 下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估 被引量:1
3
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
在线阅读 下载PDF
基于CNN-LSTM-ARIMA的超短期风速预测 被引量:1
4
作者 王世明 张少童 娄嘉奕 《新能源进展》 CSCD 北大核心 2024年第6期688-695,共8页
提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列... 提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列数据中的模式和局部特征,利用LSTM模型对提取的特征进行学习训练,基于CNN-LSTM组合架构模型,预测未来风速并对比实际数据获得残差值,最终利用ARIMA分析历史残差来修正未来的预测误差值,实现对风速的超短期预测。以土耳其某个风电场的实际风速记录为基础,对未来10min的风速进行预测。结果表明,与CNN-LSTM、双层LSTM传统神经网络模型相比,CNN-LSTM-ARIMA模型对风速预测结果的平均绝对误差分别下降了16.40%、26.92%,能显著提高预测精度。 展开更多
关键词 风速预测 卷积神经网络 长短期记忆网络 自回归集成移动平均模型
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
5
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于R语言时间序列的ARIMA模型预测某三甲综合医院人均月住院费用和住院日的研究
6
作者 李君 曹良海 《中国卫生产业》 2024年第11期220-224,共5页
目的运用自回归积分滑动平均模型(Autoregressive Intergrated Moving Average,ARIMA)建立月平均住院费用和住院日的医学经济学模型,为医院精细化管理提供依据。方法利用R4.0.2软件对2017年1月—2021年12月四川大学华西医院宜宾医院(宜... 目的运用自回归积分滑动平均模型(Autoregressive Intergrated Moving Average,ARIMA)建立月平均住院费用和住院日的医学经济学模型,为医院精细化管理提供依据。方法利用R4.0.2软件对2017年1月—2021年12月四川大学华西医院宜宾医院(宜宾市第二人民医院)的平均住院费用和住院日数据建立时间序列ARIMA预测模型。结果住院费用最优模型为ARIMA(0,1,1),赤池信息准则(Akaike information criterion,AIC)=924.35,贝叶斯信息准则(Bayesian Information Criterion,BIC)=928.51,残差Ljung-Box Q=12.51(P=0.768),可认为残差序列为白噪声。平均住院日的最优模型为ARIMA(5,1,1),AIC=87.49,BIC=104.11,残差Ljung-Box Q=10.05(P=0.612),可认为残差序列为白噪声。2022年1—12月实际值与预测值基本吻合,月人均住院费用和人均住院日的平均相对误差为0.55%、0.29%。结论建立基于时间序列ARIMA模型能够为合理配置卫生资源提供强有力的数据支撑。 展开更多
关键词 自回归积分滑动平均模型 平均住院费用 平均住院日 预测
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:1
7
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:2
8
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
在线阅读 下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:4
9
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
在线阅读 下载PDF
结合系统辨识和迁移学习的高速旋转弹气动力建模方法
10
作者 季稳 李春娜 +2 位作者 贾续毅 王刚 龚春林 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2197-2208,共12页
计算流体动力学与刚体动力学(Computational Fluid Dynamics and Rigid Body Dynamics,CFD/RBD)耦合仿真是旋转弹飞行性能评估的常用方法之一,但由于需要进行大量CFD计算,该方法效率较低。建立一个高效、精确且泛化能力强的气动力模型... 计算流体动力学与刚体动力学(Computational Fluid Dynamics and Rigid Body Dynamics,CFD/RBD)耦合仿真是旋转弹飞行性能评估的常用方法之一,但由于需要进行大量CFD计算,该方法效率较低。建立一个高效、精确且泛化能力强的气动力模型并以之替代耦合仿真中的CFD模块,可以大幅度提升仿真效率。针对前述旋转弹气动力建模问题,提出一种结合系统辨识和迁移学习的建模方法。给定旋转弹运动初始条件并采用CFD/RBD耦合仿真获得样本,采用自回归滑动平均方法建立原始气动力模型,同时采用长短时记忆网络建立状态预测模型。当初始条件变化不大时,原始气动力模型仍然适用;当初始条件发生较大改变时,利用迁移学习将状态预测模型迁移到该初始条件下,并预测相应初始条件下的状态参数,基于预测得到的状态参数,采用自回归滑动平均方法建立气动力模型。算例结果表明:所提方法适用于初始转速和俯仰角变化较大时对旋转弹气动力的精确建模;与直接以CFD/RBD耦合仿真结果为样本、采用自回归滑动平均方法建模相比,在精度相同时建模时间缩短了一半。 展开更多
关键词 高速旋转弹 气动力建模 自回归滑动平均 长短时记忆网络 迁移学习
在线阅读 下载PDF
基于ARMAV模型和J-散度的结构损伤识别
11
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(ARMAV)模型 J-散度 时间序列分析
在线阅读 下载PDF
基于SARIMA预警模型的水位监测效果分析与研究 被引量:2
12
作者 张健 《水利科技与经济》 2024年第4期23-28,共6页
为了提高城市水位监测的准确性及洪涝等灾害的预警能力,提出基于季节性自回归积分滑动平均(Seasonal auto-regressive integral moving average, SARIMA)模型的水位监测预警模型。该模型综合了自回归模型、移动平均模型和季节性差分模型... 为了提高城市水位监测的准确性及洪涝等灾害的预警能力,提出基于季节性自回归积分滑动平均(Seasonal auto-regressive integral moving average, SARIMA)模型的水位监测预警模型。该模型综合了自回归模型、移动平均模型和季节性差分模型,适用于分析和预测具有季节性和非平稳特征的时间序列数据。结果显示,基于SARIMA预警模型的水位监测系统,对城市周边的水位监测拟合效果较好,可对城市周边水位进行有效监测,提高应对城市内涝灾害的预警效果。 展开更多
关键词 季节性自回归积分滑动平均模型 水位监测 水位预警 数据填充
在线阅读 下载PDF
融合SARIMA与BiLSTM的水利设施形变预测
13
作者 唐帅 杨涛 +2 位作者 皮明 张良 袁自祥 《现代雷达》 CSCD 北大核心 2024年第3期96-103,共8页
水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测... 水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题。该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度。结合某水电站4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度。 展开更多
关键词 水利设施监测 时间序列预测 趋势性 季节自回归差分移动平均模型 双向长短期记忆网络
在线阅读 下载PDF
挠性陀螺EMD-ARIMA漂移模型设计与应用
14
作者 蔡曜 司玉辉 +3 位作者 王玉琢 黄涛 张亚静 杨晓龙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第11期3434-3444,共11页
为降低挠性陀螺的漂移率,提高挠性陀螺的精度,基于经验模态分解(EMD)、求和自回归移动平均(ARIMA)2种信号处理工具,提出EMD-ARIMA漂移模型。设计野点剔除算子,避免EMD过程中出现过冲、欠冲问题;对本征模态函数(IMF)辨识进行讨论,制定各... 为降低挠性陀螺的漂移率,提高挠性陀螺的精度,基于经验模态分解(EMD)、求和自回归移动平均(ARIMA)2种信号处理工具,提出EMD-ARIMA漂移模型。设计野点剔除算子,避免EMD过程中出现过冲、欠冲问题;对本征模态函数(IMF)辨识进行讨论,制定各阶IMF的使用原则;设计自适应定阶寻优算子,避免依靠技术人员判读自相关图、偏自相关图进行ARIMA建模,实现对多个信号(或多阶IMF)进行EMD-ARIMA建模的批处理功能。将重构的拟合信号和原始信号进行对比。工程实践表明:最终重构的拟合信号较原始信号漂移率降低了12.8%;Allan方差各项误差源均降低,MAPE为3.6×10^(-3),RMSE为5.1×10^(-3),残差趋于白噪声;漂移模型在挠性陀螺漂移建模中,具有同路重复性、两路一致性、不同个体通用性。 展开更多
关键词 挠性陀螺 求和自回归移动平均模型 经验模态分解 野点剔除算子 自适应定阶寻优算子
在线阅读 下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型
15
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
在线阅读 下载PDF
基于多元时间序列的煤矿粉尘浓度预测方法
16
作者 邓勤 《矿业安全与环保》 北大核心 2024年第6期35-41,53,共8页
为了提高矿井粉尘浓度预测精度,针对煤矿粉尘浓度数据的时序特征,提出了一种基于多元时间序列分析的煤矿粉尘浓度预测方法。采用变分模态分解(VMD)将粉尘浓度时序信号分解为趋势、周期和随机波动3个维度;分别利用灰色模型(GM(1,1))、霍... 为了提高矿井粉尘浓度预测精度,针对煤矿粉尘浓度数据的时序特征,提出了一种基于多元时间序列分析的煤矿粉尘浓度预测方法。采用变分模态分解(VMD)将粉尘浓度时序信号分解为趋势、周期和随机波动3个维度;分别利用灰色模型(GM(1,1))、霍尔特-温特斯(Holt-Winters)三次指数平滑法及自回归移动平均(ARMA(p,q))模型对各维度进行预测,并将预测结果进行融合生成最终预测值。利用现有矿井监测数据对提出的粉尘浓度预测方法进行了验证。实验结果表明,基于多元时间序列的煤矿粉尘浓度预测方法的平均绝对误差(MAE)为0.0094,均方误差(MSE)为0.0001,均方根误差(RMSE)为0.0104,最大相对误差为0.48%。将基于多元时间序列的煤矿粉尘浓度预测方法与经典单一或复合方法进行比较,其在MSE、RMSE及最大相对误差等关键指标方面均优于经典方法,验证了该方法的有效性。 展开更多
关键词 粉尘浓度预测 时序数据 变分模态分解 灰色模型 霍尔特-温特斯三次指数平滑法 自回归移动平均模型
在线阅读 下载PDF
高阶统计量地震子波估计建模 被引量:15
17
作者 戴永寿 郑德玲 +1 位作者 魏磊 霍志勇 《石油地球物理勘探》 EI CSCD 北大核心 2006年第5期514-518,540,共6页
本文在反射系数序列为非高斯、平稳和统计独立的随机过程,地震子波为非因果、混合相位的假设条件下,分别应用滑动平均(MA)和自回归滑动平均(ARMA)模型对地震记录进行建模,并采用运算代价较小的基于高阶累积量的线性化求解方法——累积... 本文在反射系数序列为非高斯、平稳和统计独立的随机过程,地震子波为非因果、混合相位的假设条件下,分别应用滑动平均(MA)和自回归滑动平均(ARMA)模型对地震记录进行建模,并采用运算代价较小的基于高阶累积量的线性化求解方法——累积量矩阵方程法进行了子波提取和模型适应性的研究。数值模拟结果和实际地震数据处理结果表明:自回归滑动平均(ARMA)模型比滑动平均(MA)模型具有参数节省、模型更为高效的特点;累积量矩阵方程法可以有效地压制加性高斯噪声,但对累积量样本估计的准确性要求较高;如果累积量样本估计的误差和方差适度,结合自回归滑动平均(ARMA)模型描述的累积量矩阵方程法可以高效、准确地估计出地震子波。 展开更多
关键词 高阶累积量 子波 自回归滑动平均(ARMA) 滑动平均(MA) 建模
在线阅读 下载PDF
航空发动机性能参数预测方法 被引量:25
18
作者 李晓白 崔秀伶 郎荣玲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第3期253-256,共4页
航空发动机性能参数预测对于发动机的视情维修具有重要的意义.为了提高预测精度,在分析发动机性能参数数据特点的基础上,提出了一种新的应用于此领域的组合预测模型.首先利用小波变换将原始数据分解为不同尺度上的几组子序列,根据各子... 航空发动机性能参数预测对于发动机的视情维修具有重要的意义.为了提高预测精度,在分析发动机性能参数数据特点的基础上,提出了一种新的应用于此领域的组合预测模型.首先利用小波变换将原始数据分解为不同尺度上的几组子序列,根据各子序列的特点分别选用自回归滑动平均(ARMA,Autoregressive Moving Average)模型或求和自回归滑动平均(ARIMA,Autoregressive Integrated Moving Average)模型进行预测,然后将所有预测结果合成,得到最终预测结果.通过仿真实验,验证了该组合模型提高短期和中长期预测精度的有效性,并分析了小波分解层数对于预测精度的影响. 展开更多
关键词 组合预测 自回归滑动平均模型 求和自回归滑动平均模型 排气温度裕度
在线阅读 下载PDF
基于GARCH-EWMA的期货价格预测模型 被引量:24
19
作者 刘轶芳 迟国泰 +2 位作者 余方平 孙韶红 王玉刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1572-1575,共4页
在EWMA和GARCH模型思想的基础上,提出基于GARCH-EWMA的期货价格预测模型,为期货市场合约价格的预测提供新的预测方法.本模型的特点一是GARCH模型对EWMA模型中的关键参数———衰减因子进行测定,解决以往使用EWMA模型时没有一个科学的确... 在EWMA和GARCH模型思想的基础上,提出基于GARCH-EWMA的期货价格预测模型,为期货市场合约价格的预测提供新的预测方法.本模型的特点一是GARCH模型对EWMA模型中的关键参数———衰减因子进行测定,解决以往使用EWMA模型时没有一个科学的确定衰减因子的方法.二是通过分别对大豆和豆粕期货合约的衰减因子进行确定,发现不同品种不同时间的衰减因子显著不同,因此,对于不同商品有区别地采用相应的衰减因子;解决以往预测模型对不同期货商品的预测均采用同一模型的问题. 展开更多
关键词 期货交易 GARCH—EWMA模型 期货价格 预测模型
在线阅读 下载PDF
基于ARIMA模型预测梅毒月发病率的价值 被引量:9
20
作者 马晓梅 徐学琴 +5 位作者 闫国立 施学忠 刘颖 王瑾瑾 刘晓蕙 裴兰英 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2018年第1期131-134,152,共5页
目的探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(roo... 目的探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均绝对百分误差(mean absolute percentage error,MAPE)、平均相对误差(mean relative error,MRE)。同法外推预测2016年7月-12月全国梅毒月发病率。结果 2009年1月-2016年6月全国梅毒月发病率最优模型是ARIMA(2,1,1)×(0,1,1)_(12),模型表达式为:(1-B)(1-B^(12))(1+0.820B)(1+0.566B^2)x_t^2=(1+0.365B)(1+0.897B^(12))ε_t,R^2=0.832,RMSE=0.181,MAE=0.118,MAPE=5.088。外推2016年7月-12月预测结果分别为3.124、3.008、2.906、2.691、2.714、2.717。结论 ARIMA模型具有较高的预测精度,可较好地拟合我国梅毒月发病率的演变趋势并进行短期预测。 展开更多
关键词 梅毒 ARIMA模型 月发病率 预测
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部