The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima...It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.展开更多
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6107901361079014+4 种基金61403198)the National Natural Science Funds and Civil Aviaiton Mutual Funds(U1533128U1233114)the Programs of Natural Science Foundation of China and China Civil Aviation Joint Fund(60939003)the Natural Science Foundation of Jiangsu Province in China(BK2011737)
文摘It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.