期刊文献+
共找到1,623篇文章
< 1 2 82 >
每页显示 20 50 100
General scheduling framework in computational Grid based on Petri net
1
作者 HU Zhi-gang HU Rong GUI Wei-hua CHEN Jian-er CHEN Song-qiao 《Journal of Central South University of Technology》 2005年第z1期232-237,共6页
A general scheduling framework (GSF) for independent tasks in computational Grid is proposed in this paper, which modeled by Petri net and located on the layer of Grid scheduler. Furthermore, a new mapping algorithm a... A general scheduling framework (GSF) for independent tasks in computational Grid is proposed in this paper, which modeled by Petri net and located on the layer of Grid scheduler. Furthermore, a new mapping algorithm aimed at time and cost is designed on the basis of this framework. The algorithm uses weighted average fuzzy applicability to express the matching degree between available machines and independent tasks. Some existent heuristic algorithms are tested in GSF, and the results of simulation and comparison not only show good flexibility and adaptability of GSF, but also prove that, given a certain aim, the new algorithm can consider the factors of time and cost as a whole and its performance is higher than those mentioned algorithms. 展开更多
关键词 GENERAL scheduling framework Meta-tasks COMPUTATIONAL GRID petri net algorithm
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Task scheduling for multi-electro-magnetic detection satellite with a combined algorithm 被引量:1
3
作者 Jianghan Zhu Lining Zhang +1 位作者 Dishan Qiu Haoping Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期88-98,共11页
Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer pr... Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer programming with constraint programming is presented. This algorithm is deployed in this problem through two steps. The first step is to decompose the original problem into master and sub-problem using the logic-based Benders decomposition; then a circus combines master and sub-problem solving process together, and the connection between them is general Benders cut. This hybrid algorithm is tested by a set of derived experiments. The result is compared with corresponding outcomes generated by the strength Pareto evolutionary algorithm and the pure constraint programming solver GECODE, which is an open source software. These tests and comparisons yield promising effect. 展开更多
关键词 task scheduling combined algorithm logic-based Benders decomposition combinatorial optimization constraint programming (CP).
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
4
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
Hybrid heuristic algorithm for multi-objective scheduling problem 被引量:3
5
作者 PENG Jian'gang LIU Mingzhou +1 位作者 ZHANG Xi LING Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期327-342,共16页
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object... This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP. 展开更多
关键词 flexible JOB-SHOP scheduling HARMONY SEARCH (HS) algorithm PARETO OPTIMALITY opposition-based learning
在线阅读 下载PDF
An optimal scheduling algorithm based on task duplication 被引量:2
6
作者 RuanYoulin LiuCan ZhuGuangxi LuXiaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期445-450,共6页
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ... When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks. 展开更多
关键词 optimal scheduling algorithm task duplication optimality condition.
在线阅读 下载PDF
Improving performance of open-pit mine production scheduling problem under grade uncertainty by hybrid algorithms 被引量:2
7
作者 Kamyar TOLOUEI Ehsan MOOSAVI +2 位作者 Amir Hossein BANGIAN TABRIZI Peyman AFZAL Abbas AGHAJANI BAZZAZI 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2479-2493,共15页
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ... One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach. 展开更多
关键词 open-pit mine long-term production scheduling grade uncertainty augmented Lagrangian relaxation particle swarm optimization algorithm bat algorithm
在线阅读 下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
8
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
9
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
10
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
基于Petri网和改进遗传算法的多资源调度问题 被引量:5
11
作者 高慕云 李榜华 +2 位作者 马浩亮 张福礼 贺可太 《计算机工程与设计》 北大核心 2024年第6期1674-1682,共9页
针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式... 针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。 展开更多
关键词 混流装配线 多资源调度 赋时库所佩特里网 改进遗传算法 交叉策略 变异策略 调度规则
在线阅读 下载PDF
基于PetriNets和混合遗传算法的双资源JSP动态优化调度
12
作者 蔡玲 陶泽 《机械设计与制造》 北大核心 2007年第8期209-211,共3页
以带有控制器的Petri网为建模工具对柔性生产调度中的离散事件建模,利用遗传算法和模拟退火算法获得调度结果,并通过Petri网进行控制。用于解决作业车间的加工受到机床、操作工人等生产资源制约条件下的优化调度。以生产周期为目标进行... 以带有控制器的Petri网为建模工具对柔性生产调度中的离散事件建模,利用遗传算法和模拟退火算法获得调度结果,并通过Petri网进行控制。用于解决作业车间的加工受到机床、操作工人等生产资源制约条件下的优化调度。以生产周期为目标进行的优化调度,将遗传算法和模拟退火相结合。通过多种交叉、变异、概率更新选择、再分配策略等遗传和模拟操作,得到目标的最优或次优解。对算法进行了仿真研究,仿真结果表明该算法是有效性。 展开更多
关键词 petri 控制器 遗传算法 模拟退火算法 车间调度
在线阅读 下载PDF
结合FISCO BCOS与拓扑优化一致性算法的配电网多目标经济调度 被引量:1
13
作者 王桂兰 张成 周国亮 《计算机工程》 北大核心 2025年第7期348-361,共14页
随着分布式能源的高比例渗透、大量储能单元以及柔性负荷的加入,主动配电网的优化调度变得更加具有挑战性。现有经济调度较少考虑柔性负荷和储能单元的接入,收敛速度较慢。结合国家“双碳”目标,提出FISCO BCOS平台下结合通信拓扑优化... 随着分布式能源的高比例渗透、大量储能单元以及柔性负荷的加入,主动配电网的优化调度变得更加具有挑战性。现有经济调度较少考虑柔性负荷和储能单元的接入,收敛速度较慢。结合国家“双碳”目标,提出FISCO BCOS平台下结合通信拓扑优化一致性算法的配电网多目标经济调度策略。该策略综合考虑发电机发电成本、污染气体排放、储能成本和柔性负荷用电效益,利用通信拓扑优化的一致性算法提高系统收敛速度,结合FISCO BCOS联盟链的存储和精简实用拜占庭容错(rPBFT)共识机制优化节点间的信息共享,降低领导节点的中心性,防止部分节点作恶,实现配电网多目标最优功率分配。仿真结果表明,提出的配电网多目标调度经济调度策略收敛速度快,在领导节点切换、不同阶段节点退出与加入及功率交换指令变化、收敛系数变动场景下仍能较快收敛,具有良好的鲁棒性和稳定性,且收敛速度优于快速一致性算法,若目标权重系数选取恰当,经济与环境结果均优于多目标NSGA-II算法。 展开更多
关键词 主动配电网 区块链 FISCO BCOS平台 多目标调度 通信拓扑优化 一致性算法
在线阅读 下载PDF
基于多目标混合迭代贪婪算法的分布式混合流水车间调度问题 被引量:1
14
作者 王建华 邱荣根 王恒 《计算机集成制造系统》 北大核心 2025年第8期2884-2893,共10页
目前我国制造模式正逐步向分布式协同生产模式演进。针对以最小化完工时间和总能耗为目标的分布式混合流水车间调度问题(DHFSP),综合遗传算子和迭代贪婪算法(IG)的优点,提出了一种基于非支配排序的多目标混合迭代贪婪算法(MOHIG)。在该... 目前我国制造模式正逐步向分布式协同生产模式演进。针对以最小化完工时间和总能耗为目标的分布式混合流水车间调度问题(DHFSP),综合遗传算子和迭代贪婪算法(IG)的优点,提出了一种基于非支配排序的多目标混合迭代贪婪算法(MOHIG)。在该算法中,基于NEH 2规则提出了一种协同初始化策略提高初始解的质量;设计一种基于多工厂的交叉算子增加种群的多样性,有助于探索问题解空间的更多区域;根据问题多工厂调度的特点提出一种多目标局部搜索方法,增强了算法的局部搜索能力,避免算法过早收敛。为了验证算法的有效性,将MOHIG与NSGA-Ⅱ、MOEA/D和JAYA三种多目标优化算法通过360个实例进行了比较,结果显示MOHIG算法的两个性能指标都优于其他三种算法,表明MOHIG算法在求解DHFSP方面具有高效性。 展开更多
关键词 分布式混合流水车间调度 多目标优化 迭代贪婪算法 能耗
在线阅读 下载PDF
基于PSO-OBL算法的平面移动类立体车库车辆调度优化模型 被引量:1
15
作者 曾超 杨子涵 +1 位作者 崔子豪 于立 《科学技术与工程》 北大核心 2025年第2期816-824,共9页
针对平面移动类立体车库在车辆存取效率方面的瓶颈问题,提出了一种基于PSO-OBL算法的存取车辆调度优化模型。该模型旨在通过精确调控车辆存取策略和时间管理,缩短车辆存取运行时间及用户平均等待时间。为提升传统粒子群算法的寻优效能... 针对平面移动类立体车库在车辆存取效率方面的瓶颈问题,提出了一种基于PSO-OBL算法的存取车辆调度优化模型。该模型旨在通过精确调控车辆存取策略和时间管理,缩短车辆存取运行时间及用户平均等待时间。为提升传统粒子群算法的寻优效能和收敛速率,将粒子间相互协作与信息交流机制融入算法框架,并结合反向学习机制以实现问题的高效求解。实验数据表明,与传统粒子群算法相比,PSO-OBL算法在顾客平均等待时间、平均服务时间、平均等待队长以及平均运行能耗等方面均实现了显著提升,研究结果将为平面移动类立体车库的存取效率提供优化理论支持和实践参考。 展开更多
关键词 停车规划与管理 机械式立体车库 平面移动类立体车库 存取调度优化 PSO-OBL算法
在线阅读 下载PDF
考虑源荷不确定性的电力系统灵活调度策略 被引量:1
16
作者 闫群民 任效煜 +2 位作者 宋潇 赵梦珏 安晨 《电力工程技术》 北大核心 2025年第2期172-184,共13页
针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。... 针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。 展开更多
关键词 新能源电力系统 灵活性资源 不确定性 两阶段鲁棒优化 列与约束生成(C&CG)算法 灵活调度
在线阅读 下载PDF
基于超节点协同一致性算法的源-荷调度策略
17
作者 李青 李红 +1 位作者 董海鹰 王浩 《郑州大学学报(工学版)》 北大核心 2025年第5期107-113,共7页
针对多分布式电源优化调度中存在的计算量与通信量大、难以实现整体完全分布式调控等问题,结合调频控制对一致性算法进行改进,提出一种基于超节点协同一致性算法的源-荷协同调度方法。首先,基于单跳采样法对原分布式电源网络结构进行拓... 针对多分布式电源优化调度中存在的计算量与通信量大、难以实现整体完全分布式调控等问题,结合调频控制对一致性算法进行改进,提出一种基于超节点协同一致性算法的源-荷协同调度方法。首先,基于单跳采样法对原分布式电源网络结构进行拓扑重构,选取超节点并对决策变量进行求解,划分的局部集内的普通节点只与超节点进行通信;其次,对离散型一致性算法进行改进,提出一种自适应全局修正系数的调频控制方法,通过采集系统频率偏差大小决策全局修正系数参与功率调节,来更好地适应主动配电网实时调度和完全分布式控制,并用所提控制方法求解系统运行成本最小调度模型;最后,通过MATLAB仿真验证所提调度方法在应对拓扑切换和源-荷突变场景下的有效性。仿真结果表明:在系统发生突变时,所提调度算法能够实现一致性增量成本的快速收敛,并有效控制各分布式电源的增量成本在8.95元以下;在系统无突变情况下,算法仅需197次迭代便可实现调度分配,可主动为调度部门提供了一种有效的方案。 展开更多
关键词 分布式 一致性算法 调频控制 超节点 优化调度 修正系数
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
18
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
基于模拟退火遗传算法的舰船编队网络优化调度方法
19
作者 陆青梅 赵山林 高媛 《舰船科学技术》 北大核心 2025年第10期155-160,共6页
舰船编队网络是一个复杂的通信系统,为减少通信延迟,确保信息的及时传递,提高整个编队的反应速度和作战效能,提出基于模拟退火遗传算法的舰船编队网络优化调度方法。以最小通信总延迟与总能耗为目标函数,通过设置约束条件,建立舰船编队... 舰船编队网络是一个复杂的通信系统,为减少通信延迟,确保信息的及时传递,提高整个编队的反应速度和作战效能,提出基于模拟退火遗传算法的舰船编队网络优化调度方法。以最小通信总延迟与总能耗为目标函数,通过设置约束条件,建立舰船编队网络优化调度模型。利用模拟退火遗传算法求解调度模型,实现最小通信总延迟与总能耗的舰船编队网络优化调度。实验结果表明,应用本文方法后,舰船编队网络的通信总延迟在0~80 ms之间,能耗保持在580 kWh以下。说明本文方法可以有效提升舰船编队网络通信的稳定性和效率,显著增强了编队的作战适应性和应变能力,为海军作战和海上安全提供更为可靠的支撑。 展开更多
关键词 模拟退火 遗传算法 舰船编队网络 优化调度 适应性 应变能力
在线阅读 下载PDF
改进候鸟算法求解可重入混流车间批量流调度
20
作者 罗亚波 喻少龙 +1 位作者 张峰 李存荣 《浙江大学学报(工学版)》 北大核心 2025年第8期1598-1607,共10页
鉴于阵列车间手工排产难以适应复杂多变的生产需求,构建可重入混合流水车间批量流调度问题(RHFSP-LS)模型,提出改进多目标候鸟优化算法进行求解.设计基于非支配排序、加权总和与外部档案集的多目标候鸟优化算法.利用Logistic混沌映射和... 鉴于阵列车间手工排产难以适应复杂多变的生产需求,构建可重入混合流水车间批量流调度问题(RHFSP-LS)模型,提出改进多目标候鸟优化算法进行求解.设计基于非支配排序、加权总和与外部档案集的多目标候鸟优化算法.利用Logistic混沌映射和NEH算法,提高了初始种群的质量.提出“子批优先”+“批次优先”的解码策略,提升了算法对于特殊问题的求解能力.提出基于个体年龄的邻域搜索,优化了种群的邻域搜索方向.提出结合外部档案集的逃逸机制,提升了算法的全局搜索能力.通过实验验证了所提策略及算法在解决RHFSP-LS上的有效性与优越性,保证了整体生产周期与各工艺批次交货期限的有效平衡. 展开更多
关键词 可重入混合流水车间 批量流 候鸟优化算法 多目标优化 生产调度
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部