Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in...Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.展开更多
This paper reports that the growth of RuO2(110) thin layer growth on Ru(0001) has been investigated by means of scanning tunnelling microscope (STM). The STM images showed a domain structure with three rotationa...This paper reports that the growth of RuO2(110) thin layer growth on Ru(0001) has been investigated by means of scanning tunnelling microscope (STM). The STM images showed a domain structure with three rotational domains of RuO2(110) rotated by an angle of 120°. The as-grown RuO2(110) thin layer is expanded from the bulk-truncated RuO2(110) due to the large mismatch between RuO2(110) and the Ru(0001) substrate. The results also indicate that growth of RuO2(110) thin layer on the Ru(0001) substrate by oxidation tends first to formation of the Ru-O (oxygen) chains in the [001] direction of RuO2 (110).展开更多
The adsorption structures of 4-cyanophenyl 4-butoxy benzoate(CPBOB) on graphite are studied by Scanning Tunneling Microscope(STM) at room temperature from the mixture of two different liquid crystals. STM images of CP...The adsorption structures of 4-cyanophenyl 4-butoxy benzoate(CPBOB) on graphite are studied by Scanning Tunneling Microscope(STM) at room temperature from the mixture of two different liquid crystals. STM images of CPBOB molecules are visualized for the first time with a near-atomic resolution. The adsorption structures are also investigated by molecular dynamical calculation. The STM images of CPBOB are stable in the period of 12 hours. These results indicate that liquid crystals of higher melting point on the surface of graphite can be studied by STM at the room temperature and the CPBOB mnolecules in a unit are orientated in the way of head to head.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2019YFA0308600 and 2020YFA0309000)the National Natural Science Foundation of China(Grant Nos.92365302,92065201,22325203,92265105,12074247,12174252,52102336)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Science and Technology Commission of Shanghai Municipality(Grant Nos.2019SHZDZX01,19JC1412701,20QA1405100,24LZ1401000,LZPY2024-04)financial support from the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302500)。
文摘Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274072), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20030335017).
文摘This paper reports that the growth of RuO2(110) thin layer growth on Ru(0001) has been investigated by means of scanning tunnelling microscope (STM). The STM images showed a domain structure with three rotational domains of RuO2(110) rotated by an angle of 120°. The as-grown RuO2(110) thin layer is expanded from the bulk-truncated RuO2(110) due to the large mismatch between RuO2(110) and the Ru(0001) substrate. The results also indicate that growth of RuO2(110) thin layer on the Ru(0001) substrate by oxidation tends first to formation of the Ru-O (oxygen) chains in the [001] direction of RuO2 (110).
文摘The adsorption structures of 4-cyanophenyl 4-butoxy benzoate(CPBOB) on graphite are studied by Scanning Tunneling Microscope(STM) at room temperature from the mixture of two different liquid crystals. STM images of CPBOB molecules are visualized for the first time with a near-atomic resolution. The adsorption structures are also investigated by molecular dynamical calculation. The STM images of CPBOB are stable in the period of 12 hours. These results indicate that liquid crystals of higher melting point on the surface of graphite can be studied by STM at the room temperature and the CPBOB mnolecules in a unit are orientated in the way of head to head.