The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railw...The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally.展开更多
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach...To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM.展开更多
Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in...Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.展开更多
In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is com...In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.展开更多
Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is us...Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.展开更多
A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed t...A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed to enhance the beam scanning rate,while circular polarization is achieved by etchingπ-shaped slots on the top plane.To suppress the open stopband at broadside,offset circular DGSs are periodically etched on the ground plane.Their impact on the reflection coefficient and axial ratio is then analyzed through a parametric study.A prototype of the antenna is simulated,fabricated,and measured.Both simulated and measured results indicate a scanning rate of approximately 8.6,with continuous beam scanning from-41°to 59°across the 11.3-12.7 GHz operating band.The antenna maintains an axial ratio below 3 dB within the 11.5-12.3 GHz range.This design shows promise for use in wireless communication systems,particularly in environments with increasingly limited spectrum resources.展开更多
To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette...To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette scanning sub images more effectively. It can restore the original area and shape of an object effectively, and keep the energy information of the object. To process sub images got by a rosette scanning system, morphological filter is more effective than traditional low pass filter.展开更多
A design for precise scanning magnetic field control for the beam delivery system of the Shanghai Advanced Proton Therapy Facility(APTRON) is presented in this paper. With a novel feedforward algorithm to compensate f...A design for precise scanning magnetic field control for the beam delivery system of the Shanghai Advanced Proton Therapy Facility(APTRON) is presented in this paper. With a novel feedforward algorithm to compensate for magnet hysteresis, the scanning magnetic field can be controlled to within a precision of ± 2.5 G.The main advantage of the proposed feedforward algorithm is that the average settling time is shorter compared with that of a conventional feedback algorithm with acceptable tolerance.展开更多
A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is ...A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science.展开更多
An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and proce...An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.展开更多
Aiming at the problem of scanning distortion in X-Y galvanometer light detecting and ranging(Lidar) scanning system,we propose a method of image scanning distortion correction with controllable driving voltage compens...Aiming at the problem of scanning distortion in X-Y galvanometer light detecting and ranging(Lidar) scanning system,we propose a method of image scanning distortion correction with controllable driving voltage compensation.Firstly,the geometrical optics vectors model is established to explain the principle of pincushion distortion in the galvanometer scanning system,and the simulation result of scanning trajectory is consistent with experiments.The linear relationship between the driving voltage and the scanning angle of the galvanometer is verified.Secondly,the relationship between the deflection angle of the galvanometer and the scanning trajectory and the driving voltage is deduced respectively,and an image scanning correction algorithm with controllable driving voltage compensation is obtained.The simulation experiment results of the proposed method show that the root-mean-square error(RMSE) and the corresponding curve between the scan value and the actual value at different distances,have a good correction effect for the pincushion distortion.Finally,the X-Y galvanometer scanning Lidar system is established to obtain undistorted two-dimensional scanned image and it can be applied to the three-dimensional Lidar scanning system in the actual experiments,which further demonstrates the feasibility and practicability of our method.展开更多
There should be high resolution demand that is better than 1000 DPI(dot per inch) for high precision image scanning system. This paper introduced the two-level computer controlled system that consisted of LS-3500 film...There should be high resolution demand that is better than 1000 DPI(dot per inch) for high precision image scanning system. This paper introduced the two-level computer controlled system that consisted of LS-3500 film scanner, AST386/33 monitoring control level and Intel 8031 single chip computer that is used as DDC level. The formula for scanning image data processing and methods of statistic parameters calculating are described.展开更多
Three-dimensional(3D)lidar has been widely used in various fields.The MEMS scanning system is one of its most important components,while the limitation of scanning angle is the main obstacle to improve the demerit for...Three-dimensional(3D)lidar has been widely used in various fields.The MEMS scanning system is one of its most important components,while the limitation of scanning angle is the main obstacle to improve the demerit for its application in various fields.In this paper,a folded large field of view scanning optical system is proposed.The structure and parameters of the system are determined by theoretical derivation of ray tracing.The optical design software Zemax is used to design the system.After optimization,the final structure performs well in collimation and beam expansion.The results show that the scan angle can be expanded from±5°to±26.5°,and finally the parallel light scanning is realized.The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm with a uniformly distributed spot.The maximum radius of the spot at 100 m is 19 cm,and the diffusion angle is less than 2 mrad.The energy concentration in the spot range is greater than 90%with a high system energy concentration,and the parallelism is good.This design overcomes the shortcoming of the small mechanical scanning angle of the MEMS lidar,and has good performance in collimation and beam expansion.It provides a design method for large-scale application of MEMS lidar.展开更多
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the...In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.展开更多
A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc....A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.展开更多
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp...The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.展开更多
We propose an interferometer composing of a scanning tunneling microscope(STM),double quantum dots(DQDs),and a semiconductor nanowire carrying Majorana bound states(MBSs)at its ends induced by the proximity effect of ...We propose an interferometer composing of a scanning tunneling microscope(STM),double quantum dots(DQDs),and a semiconductor nanowire carrying Majorana bound states(MBSs)at its ends induced by the proximity effect of an s-wave superconductor,to probe the existence of the MBSs in the dots.Our results show that when the energy levels of DQDs are aligned to the energy of MBSs,the zero-energy spectral functions of DQDs are always equal to 1/2,which indicates the formation of the MBSs in the DQDs and is also responsible for the zero-bias conductance peak.Our findings suggest that the spectral functions of the DQDs may be an excellent and convenient quantity for detecting the formation and stability of the spatially separated MBSs in quantum dots.展开更多
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm...Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.展开更多
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap...This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.展开更多
As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano ...As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.62275244,62375258,62225507,U2033211,62175230,and 62175232)the CAS Project for Young Scientists in Basic Research(No.YSBR-065)+2 种基金Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20200001)National Key R&D Program of China(No.2022YFB3607800,No.2022YFB3605800,and No.2022YFB4601501)Key Program of the Chinese Academy of Sciences(ZDBS-ZRKJZ-TLC018)。
文摘The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally.
基金supported by a characterization platform for advanced materials funded by the Korea Research Institute of Standards and Science(KRISS-2023-GP2023-0014)the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM.
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2019YFA0308600 and 2020YFA0309000)the National Natural Science Foundation of China(Grant Nos.92365302,92065201,22325203,92265105,12074247,12174252,52102336)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Science and Technology Commission of Shanghai Municipality(Grant Nos.2019SHZDZX01,19JC1412701,20QA1405100,24LZ1401000,LZPY2024-04)financial support from the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302500)。
文摘Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220719005。
文摘In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.
基金part of the Centre for Research-based Innovation SmartForest:Bringing Industry 4.0 to the Norwegian forest sector(NFR SFI project no.309671,smartforest.no)。
文摘Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.
文摘A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed to enhance the beam scanning rate,while circular polarization is achieved by etchingπ-shaped slots on the top plane.To suppress the open stopband at broadside,offset circular DGSs are periodically etched on the ground plane.Their impact on the reflection coefficient and axial ratio is then analyzed through a parametric study.A prototype of the antenna is simulated,fabricated,and measured.Both simulated and measured results indicate a scanning rate of approximately 8.6,with continuous beam scanning from-41°to 59°across the 11.3-12.7 GHz operating band.The antenna maintains an axial ratio below 3 dB within the 11.5-12.3 GHz range.This design shows promise for use in wireless communication systems,particularly in environments with increasingly limited spectrum resources.
文摘To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette scanning sub images more effectively. It can restore the original area and shape of an object effectively, and keep the energy information of the object. To process sub images got by a rosette scanning system, morphological filter is more effective than traditional low pass filter.
基金supported by the Youth Innovation Promotion Association CAS(No.2016238)
文摘A design for precise scanning magnetic field control for the beam delivery system of the Shanghai Advanced Proton Therapy Facility(APTRON) is presented in this paper. With a novel feedforward algorithm to compensate for magnet hysteresis, the scanning magnetic field can be controlled to within a precision of ± 2.5 G.The main advantage of the proposed feedforward algorithm is that the average settling time is shorter compared with that of a conventional feedback algorithm with acceptable tolerance.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YZ200740)the National Natural Science Foundation of China (Grant Nos.60978034 and 10974019)the National High Technology Research and Development Program of China (Grant No.2009AA03Z318)
文摘A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science.
基金supported by the National "Eleventh Five-Year" Forestry Support Program of China (No2006BAD03A1603)
文摘An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775048 and 62027823)the Natural Science Foundation of Shenzhen(Grant No.JCYJ2020109150808037)。
文摘Aiming at the problem of scanning distortion in X-Y galvanometer light detecting and ranging(Lidar) scanning system,we propose a method of image scanning distortion correction with controllable driving voltage compensation.Firstly,the geometrical optics vectors model is established to explain the principle of pincushion distortion in the galvanometer scanning system,and the simulation result of scanning trajectory is consistent with experiments.The linear relationship between the driving voltage and the scanning angle of the galvanometer is verified.Secondly,the relationship between the deflection angle of the galvanometer and the scanning trajectory and the driving voltage is deduced respectively,and an image scanning correction algorithm with controllable driving voltage compensation is obtained.The simulation experiment results of the proposed method show that the root-mean-square error(RMSE) and the corresponding curve between the scan value and the actual value at different distances,have a good correction effect for the pincushion distortion.Finally,the X-Y galvanometer scanning Lidar system is established to obtain undistorted two-dimensional scanned image and it can be applied to the three-dimensional Lidar scanning system in the actual experiments,which further demonstrates the feasibility and practicability of our method.
文摘There should be high resolution demand that is better than 1000 DPI(dot per inch) for high precision image scanning system. This paper introduced the two-level computer controlled system that consisted of LS-3500 film scanner, AST386/33 monitoring control level and Intel 8031 single chip computer that is used as DDC level. The formula for scanning image data processing and methods of statistic parameters calculating are described.
基金the Shenzhen Fundamental Research Program(Grant No.JCYJ2020109150808037)the National Key Scientific Instrument and Equipment Development Projects of China(Grant No.62027823)the National Natural Science Foundation of China(Grant No.61775048)。
文摘Three-dimensional(3D)lidar has been widely used in various fields.The MEMS scanning system is one of its most important components,while the limitation of scanning angle is the main obstacle to improve the demerit for its application in various fields.In this paper,a folded large field of view scanning optical system is proposed.The structure and parameters of the system are determined by theoretical derivation of ray tracing.The optical design software Zemax is used to design the system.After optimization,the final structure performs well in collimation and beam expansion.The results show that the scan angle can be expanded from±5°to±26.5°,and finally the parallel light scanning is realized.The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm with a uniformly distributed spot.The maximum radius of the spot at 100 m is 19 cm,and the diffusion angle is less than 2 mrad.The energy concentration in the spot range is greater than 90%with a high system energy concentration,and the parallelism is good.This design overcomes the shortcoming of the small mechanical scanning angle of the MEMS lidar,and has good performance in collimation and beam expansion.It provides a design method for large-scale application of MEMS lidar.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFE0129800)the National Natural Science Foundation of China(Grant No.42202204)。
文摘In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2017YFE0301700)National Natural Science Foundation of China(No.11635008).
文摘A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.
基金the National Natural Science Foundation of China(Nos.52122402,12172334,52034010,52174051)Shandong Provincial Natural Science Foundation(Nos.ZR2021ME029,ZR2022JQ23)Fundamental Research Funds for the Central Universities(No.22CX01001A-4)。
文摘The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11564029 and 11675023)the Natural Science Foundation of Inner Mongolia,China(Grant No.2017MS0112)+3 种基金the Science Foundation for Excellent Youth Scholors of Inner Mongolia University of Science and Technology,China(Grant No.2017YQL06)the Initial Project of UEST of China,Zhongshan Institute(Grant No.415YKQ02)the Science and Technology Bureau of Zhongshan City,China(Grant Nos.2017B1116 and 2017B1016)the Innovation Team of Zhongshan City,China(Grant No.180809162197886).
文摘We propose an interferometer composing of a scanning tunneling microscope(STM),double quantum dots(DQDs),and a semiconductor nanowire carrying Majorana bound states(MBSs)at its ends induced by the proximity effect of an s-wave superconductor,to probe the existence of the MBSs in the dots.Our results show that when the energy levels of DQDs are aligned to the energy of MBSs,the zero-energy spectral functions of DQDs are always equal to 1/2,which indicates the formation of the MBSs in the DQDs and is also responsible for the zero-bias conductance peak.Our findings suggest that the spectral functions of the DQDs may be an excellent and convenient quantity for detecting the formation and stability of the spatially separated MBSs in quantum dots.
基金supported by National Natural Science Foundation of China(62135007 and 61925502).
文摘Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.
基金supported by the Science Committee of RK MES under the Grant No. AP05130525。
文摘This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.
文摘As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15.