A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scale...A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained.展开更多
Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth ...Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calc...The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calculate the ground and higher excited resonances accurately and efficiently. The resonance parameters with accuracies of 10^-9 - 10^-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones. Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.展开更多
A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,w...A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,which is expressed by complex amplitudes,of the first order is obtained.And solvable conditions satisfied by the complex amplitudes are given,and then the relative result is generalized.展开更多
In this paper a modified L-P method and multiple scale method are used to solve sub-harmonic resonance solutions of strong and nonlinear resonance of general Van der Pol equation with parametric and external excitatio...In this paper a modified L-P method and multiple scale method are used to solve sub-harmonic resonance solutions of strong and nonlinear resonance of general Van der Pol equation with parametric and external excitations by parametric transformation. Bifurcation response equation and transition sets of sub-harmonic resonance with strong nonlinearity of general Van der Pol equation with parametric and external excitation are worked out.Besides, transition sets and bifurcation graphs are drawn to help to analysis the problems theoretically. Conclusions show that the transition sets of general and nonlinear Van der Pol equation with parametric and external excitations are more complex than those of general and nonlinear Van der Pol equation only with parametric excitation, which is helpful for the qualitative and quantitative reference for engineering and science applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11002054)
文摘A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained.
基金the National Natural Science Foundation of China(Grant Nos.12074265 and 11804233).
文摘Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674154)
文摘The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calculate the ground and higher excited resonances accurately and efficiently. The resonance parameters with accuracies of 10^-9 - 10^-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones. Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.
基金Supported by the NNSF of China(10471039)Supported by the Natural Science Foundation of Zhejiang Province(Y606268)Supported by the E-Institutes of Shanghai Municipal Education Commission(E03004)
文摘A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,which is expressed by complex amplitudes,of the first order is obtained.And solvable conditions satisfied by the complex amplitudes are given,and then the relative result is generalized.
基金Supported by the National Natural Science Foundation of China(11201118)
文摘In this paper a modified L-P method and multiple scale method are used to solve sub-harmonic resonance solutions of strong and nonlinear resonance of general Van der Pol equation with parametric and external excitations by parametric transformation. Bifurcation response equation and transition sets of sub-harmonic resonance with strong nonlinearity of general Van der Pol equation with parametric and external excitation are worked out.Besides, transition sets and bifurcation graphs are drawn to help to analysis the problems theoretically. Conclusions show that the transition sets of general and nonlinear Van der Pol equation with parametric and external excitations are more complex than those of general and nonlinear Van der Pol equation only with parametric excitation, which is helpful for the qualitative and quantitative reference for engineering and science applications.