期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双曲正切函数的修正线性单元 被引量:8
1
作者 刘坤华 钟佩思 +2 位作者 徐东方 夏强 刘梅 《计算机集成制造系统》 EI CSCD 北大核心 2020年第1期145-151,共7页
为解决修正线性单元(ReLU)的神经元死亡现象,提出一个新的激活函数——基于双曲正切函数(tanh)的修正线性单元(ThLU)。ThLU函数正半轴来自于ReLU函数的正半轴,负半轴来自于tanh函数的负半轴。为验证ThLU函数的性能,基于VggNet-16神经网... 为解决修正线性单元(ReLU)的神经元死亡现象,提出一个新的激活函数——基于双曲正切函数(tanh)的修正线性单元(ThLU)。ThLU函数正半轴来自于ReLU函数的正半轴,负半轴来自于tanh函数的负半轴。为验证ThLU函数的性能,基于VggNet-16神经网络架构,分别在CIFAR-10和CIFAR-100数据集上进行了试验验证。结果表明:基于ThLU函数训练得到的神经网络模型比基于tanh、ReLU、泄露修正线性单元(LReLU)和指数线性单元(ELU)训练得到的神经网络模型具有更高的准确率、更低的损失。 展开更多
关键词 激活函数 双曲正切函数 修正线性单元 泄露修正线性单元 指数线性单元 深度学习
在线阅读 下载PDF
绝对值激活深度神经网络的串联故障电弧检测 被引量:4
2
作者 余琼芳 黄高路 杨艺 《计算机应用》 CSCD 北大核心 2019年第A01期54-59,共6页
串联故障电弧具有隐蔽性和随机性,发生时线路电流波形受负载类型的影响而具有复杂性,检测难度大,严重威胁用电系统安全。鉴于电流数据具有大量负值的特点,提出用绝对值函数作为激活函数改进AlexNet深度学习网络检测串联故障电弧,并分析... 串联故障电弧具有隐蔽性和随机性,发生时线路电流波形受负载类型的影响而具有复杂性,检测难度大,严重威胁用电系统安全。鉴于电流数据具有大量负值的特点,提出用绝对值函数作为激活函数改进AlexNet深度学习网络检测串联故障电弧,并分析了激活函数特性对串联故障电弧检测效果的影响。把实验采集的三类负载分别在正常和发生串联故障电弧状态下的共7200组电流数据制作成训练集和测试集,并分别对使用四种激活函数的AlexNet网络进行训练和测试。实验结果显示,ELU激活的网络最高检测正确率为95.5%;而绝对值激活的网络效果最好,其平均检测正确率最高为97.25%,最低为93%,比ReLU激活的AlexNet网络最高88.75%的平均准确率高出最少4.25个百分点;而使用Sigmoid函数的网络不收敛。分析结果表明线性的激活数据特征有助于提高网络的检测准确率。 展开更多
关键词 串联故障电弧 深度学习 卷积神经网络 激活函数 绝对值函数 指数线性单元 修正线性单元
在线阅读 下载PDF
一种海上弱小运动船舶实时检测方法 被引量:7
3
作者 周薇娜 丁豪文 周颖 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第9期1187-1192,共6页
弱小船舶目标实时检测因在海上搜救、无人船和海上交通管理等领域中的众多应用而备受关注。虽然基于深度学习的目标检测算法,如YOLO(you only look once)和SSD(single shot multibox detector)等取得了不错的目标检测性能,但是它们仍然... 弱小船舶目标实时检测因在海上搜救、无人船和海上交通管理等领域中的众多应用而备受关注。虽然基于深度学习的目标检测算法,如YOLO(you only look once)和SSD(single shot multibox detector)等取得了不错的目标检测性能,但是它们仍然无法实时有效检测出海上弱小船舶运动目标。针对此问题,文章提出了一种改进的深度学习网络结构,结合SELU(scaled exponential linear units)激活函数,有效解决了已有的YOLOv2算法对弱小目标检测率较低的不足以及YOLOv3算法中残差网络结构冗余的问题。实验表明,该文提出的方法在海上弱小船舶目标检测上,比原YOLO算法具有更高的检测精度、更快的检测速度和更优良的鲁棒性。该方法在低配硬件环境中仍具有实时性的特点,因此对算法的推广应用具有实际的意义。 展开更多
关键词 YOLO 弱小目标 实时检测 selu激活函数
在线阅读 下载PDF
基于侧链连接卷积神经网络的手掌静脉图像识别 被引量:2
4
作者 娄梦莹 王天景 +2 位作者 刘娅琴 杨丰 黄靖 《计算机应用》 CSCD 北大核心 2020年第12期3673-3678,共6页
针对手掌静脉图像数量少且质量参差不齐,进而导致掌脉识别系统的性能降低的现象,提出一种基于侧链连接卷积神经网络的手掌静脉图像识别方法。首先,在ResNet模型的基础上,用卷积层和池化层提取掌脉特征。然后,采用指数线性单元(ELU)激活... 针对手掌静脉图像数量少且质量参差不齐,进而导致掌脉识别系统的性能降低的现象,提出一种基于侧链连接卷积神经网络的手掌静脉图像识别方法。首先,在ResNet模型的基础上,用卷积层和池化层提取掌脉特征。然后,采用指数线性单元(ELU)激活函数、批归一化(BN)和Dropout技术来改进和优化模型,以缓解梯度消失、防止过拟合、加快收敛及增强模型泛化能力。最后,引入稠密连接网络(DenseNet),使提取到的手掌静脉特征更具丰富性和有效性。在两个公开库和一个自建库上分别进行实验,结果表明所提方法在三个数据库上的识别率分别为99.98%、97.95%、97.96%。可见该方法能有效提高掌脉识别系统的性能,且更适用于掌脉识别的实际应用。 展开更多
关键词 手掌静脉识别 ResNet 指数线性单元激活函数 批归一化 DROPOUT 稠密连接网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部