Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fiel...Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fields.With fish-like propulsion systems,it is important to pay more attention to complex flow fields.In this paper,the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was investigated.The flapping-foil heaved and pitched under the influence of inflow vortices generated by an oscillating D-section cylinder.A numerical simulation was run based the finite volume method,using the computational fluid dynamics(CFD) software FLUENT with Reynolds-averaged Navier-Stokes(RANS) equations applied.In addition,dynamic mesh technology and post processing systems were also fully used.The calculations showed four modes of interaction.The hydrodynamic performance of flapping-foils was analyzed and the results compared with experimental data.This validated the numerical simulation,confirming that flapping-foils can increase efficiency by absorbing energy from inflow vortices.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50579007,50879014the specialized research fund for the doctoral program of higher education under Grant No.200802170010
文摘Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fields.With fish-like propulsion systems,it is important to pay more attention to complex flow fields.In this paper,the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was investigated.The flapping-foil heaved and pitched under the influence of inflow vortices generated by an oscillating D-section cylinder.A numerical simulation was run based the finite volume method,using the computational fluid dynamics(CFD) software FLUENT with Reynolds-averaged Navier-Stokes(RANS) equations applied.In addition,dynamic mesh technology and post processing systems were also fully used.The calculations showed four modes of interaction.The hydrodynamic performance of flapping-foils was analyzed and the results compared with experimental data.This validated the numerical simulation,confirming that flapping-foils can increase efficiency by absorbing energy from inflow vortices.