Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four ...The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC) mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (Ks) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg. kg^-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ± 0.5 times. All soils treated with CMCs showed a significant lower in Ks compared to the control soil. Meanwhile, Ks was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil展开更多
Aiming at less and un-uniform distribution rainfall problems, the serious draught in spring, low crop production and water efficiency in sandy soil area of Heilongjiang Province, the experiment of alternative furrow i...Aiming at less and un-uniform distribution rainfall problems, the serious draught in spring, low crop production and water efficiency in sandy soil area of Heilongjiang Province, the experiment of alternative furrow irrigation was conducted in Dumeng County in 2009. The purpose of the experiment was to find the water consumption law and its influence on maize yield. The results showed that the highest water consumption was during the heading stage and the highest daily consumption of water was during the filling stage. The stimulation effect of alternative furrow irrigation on yield was obvious in the appropriate irrigation level. The best irrigation pattern for the highest yield was as follows: the seedling stage was 325 m3. hm^-2; the jointing stage was 400 m3-hm^-2; and the filling stage was 288 m3- hm-2. The water consumption during each growing period was that the seedling was 38.85 mm; the jointing was 108.11 mm; the heading was 124.39 ram; the filling was 88.96 ram; the milk was 60.21 ram; and the harvesting was 47.89 mm.展开更多
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.
文摘The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC) mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (Ks) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg. kg^-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ± 0.5 times. All soils treated with CMCs showed a significant lower in Ks compared to the control soil. Meanwhile, Ks was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil
基金Supported by Construction Found of Key Laboratory for Water-saving Agriculture in Universities of Heilongjiang Province (2006BAD29B01)National Science and Technology Program of China (2007BAD88B01)
文摘Aiming at less and un-uniform distribution rainfall problems, the serious draught in spring, low crop production and water efficiency in sandy soil area of Heilongjiang Province, the experiment of alternative furrow irrigation was conducted in Dumeng County in 2009. The purpose of the experiment was to find the water consumption law and its influence on maize yield. The results showed that the highest water consumption was during the heading stage and the highest daily consumption of water was during the filling stage. The stimulation effect of alternative furrow irrigation on yield was obvious in the appropriate irrigation level. The best irrigation pattern for the highest yield was as follows: the seedling stage was 325 m3. hm^-2; the jointing stage was 400 m3-hm^-2; and the filling stage was 288 m3- hm-2. The water consumption during each growing period was that the seedling was 38.85 mm; the jointing was 108.11 mm; the heading was 124.39 ram; the filling was 88.96 ram; the milk was 60.21 ram; and the harvesting was 47.89 mm.