期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于优化VMD和BiLSTM的短期负荷预测
1
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊断
2
作者 问亚鹏 张佳奇 +3 位作者 郭锐 杨锦昌 何丝丝 张浩 《液压与气动》 北大核心 2025年第8期65-78,共14页
数据驱动的外啮合齿轮泵(以下简称齿轮泵)故障诊断中,存在实际作业中易受噪声干扰、故障特征冗余以及故障特征选择与分类器参数寻优繁琐问题,为此提出一种基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊... 数据驱动的外啮合齿轮泵(以下简称齿轮泵)故障诊断中,存在实际作业中易受噪声干扰、故障特征冗余以及故障特征选择与分类器参数寻优繁琐问题,为此提出一种基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊断方法。首先,搭建齿轮泵故障试验台获取原始故障数据,采用沙丘猫优化变分模态分解方法对齿轮泵4种磨损故障的振动信号进行降噪重构;然后,提取故障磨损4种重构信号的时域、频域和时频域统计特征共26种,并组成特征层;最后,基于蜣螂优化算法同步优化特征选择对故障特征集进行特征选择,同时优化支持向量机分类器参数,实现齿轮泵的磨损故障类型识别。结果显示,该齿轮泵故障诊断方法准确率高达99.6%,耗时仅49.8 s,具有较高的诊断精度和运算效率。 展开更多
关键词 齿轮泵 故障诊断 同步优化特征选择 蜣螂优化算法 沙丘猫优化变分模态分解
在线阅读 下载PDF
基于CEEMD联合TGSCSO-LSTM算法的变压器油中气体浓度预测方法 被引量:1
3
作者 彭继慎 夏玲云 王燚增 《电气工程学报》 CSCD 北大核心 2024年第4期407-415,共9页
油中溶解气体浓度的预测可为电力变压器状态评估与早期故障诊断提供重要的数据依据。由此,针对长短期记忆网络(Long short-term memory network,LSTM)预测模型参数选择困难的问题,同时为提高变压器油中溶解气体浓度预测的精度,提出一种... 油中溶解气体浓度的预测可为电力变压器状态评估与早期故障诊断提供重要的数据依据。由此,针对长短期记忆网络(Long short-term memory network,LSTM)预测模型参数选择困难的问题,同时为提高变压器油中溶解气体浓度预测的精度,提出一种基于CEEMD联合TGSCSO-LSTM算法的变压器油中气体浓度预测方法。利用互补集合经验模态分解算法(Complementary ensemble empirical mode decomposition,CEEMD)将原始气体浓度序列分解为一系列具有一定频率特征的分量,以提高原始序列的可预测性能;针对各分量分别建立LSTM预测模型,同时利用经Tent映射随机初始化种群与高斯扰动改进的沙丘猫群优化算法(Sand cat swarm optimization,SCSO)对LSTM网络参数进行优化选取,以提高算法的预测精度;最后重构各个分量的预测结果以获取最终的油中溶解气体浓度预测结果。利用某500 kV变压器实际气体浓度数据对所提方法进行对比试验,试验结果表明,所提方法油中溶解气体浓度预测性能优良,具有较好的应用价值。 展开更多
关键词 油中溶解气体 互补集合经验模态分解 沙丘猫群优化算法 长短时记忆神经网络
在线阅读 下载PDF
基于改进沙猫群算法优化CNN-BiLSTM的热负荷预测 被引量:6
4
作者 王耀辉 薛贵军 赵广昊 《现代电子技术》 北大核心 2024年第14期20-29,共10页
针对传统热负荷预测精度不高、无法满足换热站及热网优化调控需求的问题,提出一种VMD-ISCSO-CNN-BiLSTM的热负荷预测模型。首先,利用变分模态分解(VMD)对原始供热负荷数据进行降噪处理,降低数据的不稳定性;其次,由K-means算法改进种群... 针对传统热负荷预测精度不高、无法满足换热站及热网优化调控需求的问题,提出一种VMD-ISCSO-CNN-BiLSTM的热负荷预测模型。首先,利用变分模态分解(VMD)对原始供热负荷数据进行降噪处理,降低数据的不稳定性;其次,由K-means算法改进种群初始化,由演变机制改进寻优能力和由变异机制改进跳出局部最优能力,利用改进沙猫群算法(ISCSO)对卷积神经网络、双向长短期记忆神经网络(CNN-BiLSTM)超参数进行寻优,建立热负荷预测模型;最后通过实例进行分析。结果表明,数据降噪后模型预测精度更高,R^(2)提升1.1%;由ISCSO优化的模型比其他算法优化的模型预测效果更好,拟合度达到99.4%;VMD-ISCSO-CNN-BiLSTM的组合预测模型相较于单一模型,RMSE降低18.5%,MAE降低13.8%,R^(2)提升15.8%,并有更好的拟合度,泛化性强,满足工程实际要求。 展开更多
关键词 热负荷预测 卷积神经网络 双向长短期记忆神经网络 改进沙猫群算法 变分模态分解(VMD) K-MEANS算法 演变机制 变异机制
在线阅读 下载PDF
PEMFC系统建模与空气供给子系统氧气过量比的控制
5
作者 刘岩 肖纯 +2 位作者 陈静 伍炜 吴浩健 《太阳能学报》 EI CAS CSCD 北大核心 2024年第11期709-717,共9页
针对质子交换膜燃料电池空气供给子系统氧气过量比的控制问题,首先,建立面向控制的质子交换膜燃料电池系统的四阶非线性动态模型,构建电堆负载电流与最佳氧气过量比之间的拟合曲线方程;随后,设计一种采用新型复合趋近律的滑模控制器,并... 针对质子交换膜燃料电池空气供给子系统氧气过量比的控制问题,首先,建立面向控制的质子交换膜燃料电池系统的四阶非线性动态模型,构建电堆负载电流与最佳氧气过量比之间的拟合曲线方程;随后,设计一种采用新型复合趋近律的滑模控制器,并利用沙丘猫群优化算法对滑模控制中的参数进行寻优和整定;最后,对改进后的滑模控制器进行仿真验证,并与PID和其余3种滑模控制进行对比分析。仿真结果表明:当电堆负载电流变化时,改进后的滑模控制器可根据阴极流量偏差参数调节空压机的驱动电压,此时系统实时氧气过量比会迅速向最佳氧气过量比靠近,可将其两者之间的偏差控制0.1%之内,其所需的平均调节时间和误差性能指标均优于对比组。 展开更多
关键词 质子交换膜燃料电池 空气供给子系统 滑模控制 沙丘猫群优化算法 氧气过量比
在线阅读 下载PDF
基于VMD-ICSO-GRU的高铁列控车载设备故障率时间序列预测 被引量:12
6
作者 魏伟 赵小强 吴进 《铁道学报》 EI CAS CSCD 北大核心 2023年第6期58-68,共11页
有效地预测高铁列控车载设备故障率对合理分配设备备品、制定维修计划、减少故障发生具有重要意义。以列车运行控制系统的历史故障数据为对象,提出一种基于变分模态分解(VMD)和门控循环单元(GRU)的故障率预测模型。首先,利用VMD将车载... 有效地预测高铁列控车载设备故障率对合理分配设备备品、制定维修计划、减少故障发生具有重要意义。以列车运行控制系统的历史故障数据为对象,提出一种基于变分模态分解(VMD)和门控循环单元(GRU)的故障率预测模型。首先,利用VMD将车载设备故障率时间序列分解为一组包含不同频率信息的子序列,降低原始序列的非平稳性;然后,针对分解后的各个子序列建立多个基于GRU的时间序列预测模型,为提高预测精度,提出一种改进的猫群优化(ICSO)算法自适应设置各个GRU网络参数;最后,叠加各子序列预测结果得到最终故障率预测值。收集CTCS3-300T型列控车载设备历史故障数据进行实验,结果表明,相比于其他时间序列预测模型,本文模型得到的均方根误差(RMSE)和平均绝对误差(MAE)分别为0.0445和0.0391,均低于其他模型,验证了其有效性。 展开更多
关键词 列控车载设备 故障率预测 变分模态分解 门控循环单元 猫群优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部