综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略...综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略。首先,分析了外部现货市场环境下市场价格不确定性典型场景处理方法,并研究了综合能源系统内部多种源荷可调资源及运行成本结构;其次,建立了在电力市场价格不确定性条件下考虑系统边际成本交易优化模型,并提出沙猫群优化算法进行求解。最后,通过对实际案例的仿真验证。结果表明:该策略不仅可以降低IES的运行成本,还能增强其对市场价格不确定性的适应能力,为综合能源系统在电力现货市场环境下的运行提供了新的思路和方法,有助于实现能源系统参与市场调度的经济性和可靠性双重优化。展开更多
可再生能源的高渗透率给电网供需匹配带来严峻挑战的同时,燃煤机组需要承担着大量的调峰调频任务,这对过热汽温系统的安全稳定运行造成了一定威胁,因此有必要建立面向热工控制的汽温数学模型。考虑到迟延型扩张状态观测器(time-delayed ...可再生能源的高渗透率给电网供需匹配带来严峻挑战的同时,燃煤机组需要承担着大量的调峰调频任务,这对过热汽温系统的安全稳定运行造成了一定威胁,因此有必要建立面向热工控制的汽温数学模型。考虑到迟延型扩张状态观测器(time-delayed extended state observer,TD-ESO)的总扰动信号中含有大量模型信息,提出一种基于ESO补偿模型的参数智能优化和信息提取方法,即以总扰动中未知信息量最小为目标,采用改进沙丘猫算法对模型参数优化并提取总扰动中已知模型信息补偿至ESO的输入端。在仿真算例方面,线性和非线性系统的测试结果表明,所提辨识方法对有无输入迟延的两种系统均有良好的适用性和较高的精度;在实际应用方面,基于超超临界二次再热机组的过热汽温系统数据进行模型辨识与验证,同样表明该建模方法是合理、准确的。因此,该文所建立的模型能够为汽温系统的控制策略设计和性能优化等方面提供有价值的参考。展开更多
光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量...光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量机(support vector machine,SVM)、粒子群优化支持向量机(particle swarm optimized support vector machine,PSO-SVM)、遗传优化支持向量机(genetic optimized support vector machine,GA-SVM)、麻雀优化支持向量机(sparrow optimized support vector machine,SSA-SVM)、灰狼优化支持向量机(gray wolf optimized support vector machine,GWO-SVM)和鲸鱼优化支持向量机(whale optimized support vector machine,WOA-SVM)算法。首先,六种SVM混合算法都克服了SVM诊断结果易受参数初始值影响的缺点,识别精度相较传统SVM算法都有所提升,但是识别时间都增加。其次,7种算法中SCSO-SVM识别效果最好,克服了SVM易受参数初始值的影响,相较SVM识别精度提高了约9.4594%;是因为更能有效找到SVM惩罚因子和核函数参数。然后,对于同一种算法而言,算法的识别精度是随输入特征减少而降低的,是因为输入特征越少,越不能有效表征光伏组件在不同故障类型下的输出属性。但算法的识别时间却不是随输入特征减少而减短。所以选取合适的输入特征才能兼顾算法的故障识别准确率和效率。最后,发现七种算法的识别效果依赖于数据集的影响。原因可能是各个算法参数选择过多导致泛化性有差异,且依赖参数初始值选择。展开更多
文摘综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略。首先,分析了外部现货市场环境下市场价格不确定性典型场景处理方法,并研究了综合能源系统内部多种源荷可调资源及运行成本结构;其次,建立了在电力市场价格不确定性条件下考虑系统边际成本交易优化模型,并提出沙猫群优化算法进行求解。最后,通过对实际案例的仿真验证。结果表明:该策略不仅可以降低IES的运行成本,还能增强其对市场价格不确定性的适应能力,为综合能源系统在电力现货市场环境下的运行提供了新的思路和方法,有助于实现能源系统参与市场调度的经济性和可靠性双重优化。
文摘可再生能源的高渗透率给电网供需匹配带来严峻挑战的同时,燃煤机组需要承担着大量的调峰调频任务,这对过热汽温系统的安全稳定运行造成了一定威胁,因此有必要建立面向热工控制的汽温数学模型。考虑到迟延型扩张状态观测器(time-delayed extended state observer,TD-ESO)的总扰动信号中含有大量模型信息,提出一种基于ESO补偿模型的参数智能优化和信息提取方法,即以总扰动中未知信息量最小为目标,采用改进沙丘猫算法对模型参数优化并提取总扰动中已知模型信息补偿至ESO的输入端。在仿真算例方面,线性和非线性系统的测试结果表明,所提辨识方法对有无输入迟延的两种系统均有良好的适用性和较高的精度;在实际应用方面,基于超超临界二次再热机组的过热汽温系统数据进行模型辨识与验证,同样表明该建模方法是合理、准确的。因此,该文所建立的模型能够为汽温系统的控制策略设计和性能优化等方面提供有价值的参考。
文摘光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量机(support vector machine,SVM)、粒子群优化支持向量机(particle swarm optimized support vector machine,PSO-SVM)、遗传优化支持向量机(genetic optimized support vector machine,GA-SVM)、麻雀优化支持向量机(sparrow optimized support vector machine,SSA-SVM)、灰狼优化支持向量机(gray wolf optimized support vector machine,GWO-SVM)和鲸鱼优化支持向量机(whale optimized support vector machine,WOA-SVM)算法。首先,六种SVM混合算法都克服了SVM诊断结果易受参数初始值影响的缺点,识别精度相较传统SVM算法都有所提升,但是识别时间都增加。其次,7种算法中SCSO-SVM识别效果最好,克服了SVM易受参数初始值的影响,相较SVM识别精度提高了约9.4594%;是因为更能有效找到SVM惩罚因子和核函数参数。然后,对于同一种算法而言,算法的识别精度是随输入特征减少而降低的,是因为输入特征越少,越不能有效表征光伏组件在不同故障类型下的输出属性。但算法的识别时间却不是随输入特征减少而减短。所以选取合适的输入特征才能兼顾算法的故障识别准确率和效率。最后,发现七种算法的识别效果依赖于数据集的影响。原因可能是各个算法参数选择过多导致泛化性有差异,且依赖参数初始值选择。