期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BI-GRU改进的Seq2Seq网络的变压器油中溶解气体浓度预测方法 被引量:14
1
作者 汤健 侯慧娟 +3 位作者 陈洪岗 王劭菁 盛戈皞 江秀臣 《电力自动化设备》 EI CSCD 北大核心 2022年第3期196-202,217,共8页
基于门控循环单元(GRU)构建双向多层门控循环单元,并引入编码器-解码器结构搭建Seq2Seq网络模型,通过优化神经元及神经网络结构提取时序数据依赖关系。同时引入注意力机制和Scheduled Sampling算法,自动获取与当前时刻预测输出显著相关... 基于门控循环单元(GRU)构建双向多层门控循环单元,并引入编码器-解码器结构搭建Seq2Seq网络模型,通过优化神经元及神经网络结构提取时序数据依赖关系。同时引入注意力机制和Scheduled Sampling算法,自动获取与当前时刻预测输出显著相关的关键输入时间点,提高长时间预测的精度。变压器正常运行状态下的气体浓度预测算例结果表明,与基于简单GRU模型及简单Seq2Seq模型的方法相比,所提方法的预测误差更低且预测的发展趋势更符合真实值;变压器异常运行状态下的气体浓度预测算例结果表明,所提方法的平均相对误差和最大相对误差相比长短期记忆(LSTM)网络方法分别降低了0.73%和2.31%。 展开更多
关键词 电力变压器 油中溶解气体 门控循环单元 Seq2Seq 注意力机制 Scheduled sampling算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部