Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were p...Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection.展开更多
Antimicrobial peptides(AMP)are small proteins that play critical roles in host defense against microbe invasion.Many AMPs disrupt the cellular membrane of microbe,while the mechanism of action of AMPs can be very soph...Antimicrobial peptides(AMP)are small proteins that play critical roles in host defense against microbe invasion.Many AMPs disrupt the cellular membrane of microbe,while the mechanism of action of AMPs can be very sophisticated.Solid-state NMR(SSNMR)technique is powerful in characterizing the mechanism of AMPs in vivo and in vitro.This review summarizes the recent advance of SSNMR technique in AMP mechanisms characterization.We highlight the sample preparation approaches,the SSNMR spectroscopic methods,and a number of outstanding examples of AMP mechanisms elucidated via SSNMR spectroscopy.展开更多
The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is stil...The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.展开更多
基金supported by National Natural Science Foundation of China(No.60908018)National High Technology Research and Development Program of China(No.2013AA065502)Anhui Province Outstanding Youth Science Fund of China(No.1108085J19)
文摘Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection.
基金supported by the National Key Research and Development Program of the Ministry of Science and Technology,People's Republic of China(contract number 2016YFA0501203)the National Natural Science Foundation of China(21874004,31470727)the Interdisciplinary Medicine Seed Fund of Peking University,and the Fundamental Research Funds for the Central University.
文摘Antimicrobial peptides(AMP)are small proteins that play critical roles in host defense against microbe invasion.Many AMPs disrupt the cellular membrane of microbe,while the mechanism of action of AMPs can be very sophisticated.Solid-state NMR(SSNMR)technique is powerful in characterizing the mechanism of AMPs in vivo and in vitro.This review summarizes the recent advance of SSNMR technique in AMP mechanisms characterization.We highlight the sample preparation approaches,the SSNMR spectroscopic methods,and a number of outstanding examples of AMP mechanisms elucidated via SSNMR spectroscopy.
基金supported by the National Key Research and Development Program of China(No.2019YFD0901701)National Natural Science Foundation of China(Nos.12174359and 61975190)Provincial Key Research and Development Program of Shandong,China(No.2019GHZ010)。
文摘The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.