为优化燃料电池混合动力系统(fuel cell hybrid power system,FCHPS)并延长其使用寿命,该文提出一种考虑电堆性能一致性的多目标优化能量管理方法。该方法的目的是降低系统等效氢耗、提高燃料电池系统内电堆组运行效率的同时限制锂电池...为优化燃料电池混合动力系统(fuel cell hybrid power system,FCHPS)并延长其使用寿命,该文提出一种考虑电堆性能一致性的多目标优化能量管理方法。该方法的目的是降低系统等效氢耗、提高燃料电池系统内电堆组运行效率的同时限制锂电池荷电状态(state of charge,SOC)波动。由于电堆组的性能会在实际运行过程中发生退化,因此该方法还考虑了电堆组的性能状态差异,通过限制性能较差电堆的运行压力,以延长系统寿命。为实现这一目的采用樽海鞘群算法(salpswarmalgorithm,SSA)对目标函数进行优化求解,得到系统最优功率分配。最后,基于RT-LAB半实物仿真平台,将所提方法与有限状态机控制方法进行对比,实验结果表明所提出的方法能够有效降低系统氢耗,提高电堆组效率的同时减缓性能较差电堆的功率波动,维持系统一致性,有利于系统长期稳定运行。展开更多
针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly wit...针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning,OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm,SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。展开更多
以高压直流输电系统快速可控为出发点,采用极大极小值原理和改进粒子群优化算法相结合的新方法,针对向家坝—上海±800 k V特高压直流输电系统送端可能发生的次同步振荡(sub-synchronous oscillation,SSO)问题,建立一种基于比例积...以高压直流输电系统快速可控为出发点,采用极大极小值原理和改进粒子群优化算法相结合的新方法,针对向家坝—上海±800 k V特高压直流输电系统送端可能发生的次同步振荡(sub-synchronous oscillation,SSO)问题,建立一种基于比例积分微分控制的UHVDC附加次同步振荡阻尼控制器(subsynchronous oscillation damping controller,SSDC)模型。对不同方式的时域仿真结果表明,该SSDC控制器能够有效抑制交直流互联电网送端系统汽轮机组的轴系扭振,可在相当大范围内保证系统的SSO稳定性,具有较强的鲁棒性。展开更多
文摘为优化燃料电池混合动力系统(fuel cell hybrid power system,FCHPS)并延长其使用寿命,该文提出一种考虑电堆性能一致性的多目标优化能量管理方法。该方法的目的是降低系统等效氢耗、提高燃料电池系统内电堆组运行效率的同时限制锂电池荷电状态(state of charge,SOC)波动。由于电堆组的性能会在实际运行过程中发生退化,因此该方法还考虑了电堆组的性能状态差异,通过限制性能较差电堆的运行压力,以延长系统寿命。为实现这一目的采用樽海鞘群算法(salpswarmalgorithm,SSA)对目标函数进行优化求解,得到系统最优功率分配。最后,基于RT-LAB半实物仿真平台,将所提方法与有限状态机控制方法进行对比,实验结果表明所提出的方法能够有效降低系统氢耗,提高电堆组效率的同时减缓性能较差电堆的功率波动,维持系统一致性,有利于系统长期稳定运行。
文摘针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning,OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm,SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。