期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhanced oil recovery from carbonate reservoirs by spontaneous imbibition of low salinity water 被引量:5
1
作者 Mohammad Reza Zaeri Rohallah Hashemi +1 位作者 Hamidreza Shahverdi Mehdi Sadeghi 《Petroleum Science》 SCIE CAS CSCD 2018年第3期564-576,共13页
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the ef... An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments. 展开更多
关键词 Enhanced oil recovery Spontaneous imbibition Low salinity water Wettability alteration Carbonate rocks
在线阅读 下载PDF
Slope stability of an unsaturated embankment with and without natural pore water salinity subjected to rainfall infiltration 被引量:1
2
作者 SADEGHI Hamed KOLAHDOOZ Ali AHMADI Mohammad-Mehdi 《岩土力学》 EI CAS CSCD 北大核心 2022年第8期2136-2148,共13页
Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water pote... Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water potential being normally neglected in laboratory measurements and numerical analyses.However,ignorance of salinity may result in overestimation of stability,and the design may not be as conservative as thought.Therefore,this research aims to first experimentally examine the influence of pore water salinity on water retention curve and saturated permeability of natural dispersive loess under saline and desalinated conditions.Second,the measured parameters are used for stability analyses of a railway embankment in an area subjected to regional rainfall incident.Eventually,a numerical parametric study is carried out to explore the significance of different rainfall schemes,construction patterns,and anisotropic permeability on the factor of safety.Results reveal that desalinization suppresses the water retention capability,which in turn results in a tremendous declination of unsaturated hydraulic conductivity.Despite the natural saline embankment,rainfall can hardly infiltrate into the desalinated embankment due to the lower conductivity.Therefore,the factor of safety for natural saline conditions drops notably,while only marginal changes occur in the case of the desalinated embankment. 展开更多
关键词 slope stability water salinity osmotic potential dispersive loess rainfall patterns
在线阅读 下载PDF
Hybrid low salinity water and surfactant process for enhancing heavy oil recovery
3
作者 ROLDÁN-CARRILLO Teresa CASTORENA-CORTES Gladys +3 位作者 SALAZAR CASTILLO Rodrigo Orlando HERNÁNDEZ-ESCOBEDO Luis OLGUÍN-LORA Patricia GACHUZ-MURO Herón 《Petroleum Exploration and Development》 SCIE 2023年第6期1466-1477,共12页
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st... Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant. 展开更多
关键词 low salinity water flooding surfactant flooding hybrid processes enhanced oil recovery TOMOGRAPHY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部