New models of safety-critical systems are built here. In these systems, when components fail, different defect states have different effects, hence need different ways to measure. In the models, there are two kinds of...New models of safety-critical systems are built here. In these systems, when components fail, different defect states have different effects, hence need different ways to measure. In the models, there are two kinds of failure modes of the components: one could be called failed-safe, and the other may be named failed- dangerous In practice, the so-called failed-dangerous components may lead a system to peril. However, failed-safe components will not. Reliability and safety issues are analyzed using Ion-Channel modeling theory to get count of repairs and time duration before the system becomes dangerous. In the closing section a numerical example is presented to illustrate the results obtained in the paper.展开更多
As Vehicle Ad Hoc Networks (VANETs) is part of the applications of the Internet of Things (IoT), and Vehicles in VANETs periodically broadcast the beacon message for status advertisement to provide public safety, the ...As Vehicle Ad Hoc Networks (VANETs) is part of the applications of the Internet of Things (IoT), and Vehicles in VANETs periodically broadcast the beacon message for status advertisement to provide public safety, the impacts of the network parameters on the reliability of broadcast messages are investigated and discussed; meanwhile, a cross-layer safety-critical broadcast service architecture is proposed to obtain an optimized set of packet loss rate and delay based on the Neural Networks (NN) and Back Propagation (BP) algorithm to dynamically adjust the transmission rate-power pairs. Simulation results illustrate that the proposed mechanism can effectively improve the reliability performance while maintaining the fairness among vehicles.展开更多
Safety-critical system (SCS) has highly demand for dependability, which requires plenty of resource to ensure that the system under test (SUT) satisfies the dependability requirement. In this paper, a new SCS rapi...Safety-critical system (SCS) has highly demand for dependability, which requires plenty of resource to ensure that the system under test (SUT) satisfies the dependability requirement. In this paper, a new SCS rapid testing method is proposed to improve SCS adaptive dependability testing. The result of each test execution is saved in calculation memory unit and evaluated as an algorithm model. Then the least quantity of scenario test case for next test execution will be calculated according to the promised SUT's confidence level. The feedback data are generated to weight controller as the guideline for the further testing. Finally, a compre- hensive experiment study demonstrates that this adaptive testing method can really work in practice. This rapid testing method, testing result statistics-based adaptive control, makes the SCS dependability testing much more effective.展开更多
基金Sponsored by 211 Project of Minzu University of China(021211030312)
文摘New models of safety-critical systems are built here. In these systems, when components fail, different defect states have different effects, hence need different ways to measure. In the models, there are two kinds of failure modes of the components: one could be called failed-safe, and the other may be named failed- dangerous In practice, the so-called failed-dangerous components may lead a system to peril. However, failed-safe components will not. Reliability and safety issues are analyzed using Ion-Channel modeling theory to get count of repairs and time duration before the system becomes dangerous. In the closing section a numerical example is presented to illustrate the results obtained in the paper.
基金supported by the 111 Project under Grant No.B08004the major project of Ministry of Industry and Information Technology of the People's Republic of China under Grant No.2010ZX03002-006China Fundamental Research Funds for the Central Universities
文摘As Vehicle Ad Hoc Networks (VANETs) is part of the applications of the Internet of Things (IoT), and Vehicles in VANETs periodically broadcast the beacon message for status advertisement to provide public safety, the impacts of the network parameters on the reliability of broadcast messages are investigated and discussed; meanwhile, a cross-layer safety-critical broadcast service architecture is proposed to obtain an optimized set of packet loss rate and delay based on the Neural Networks (NN) and Back Propagation (BP) algorithm to dynamically adjust the transmission rate-power pairs. Simulation results illustrate that the proposed mechanism can effectively improve the reliability performance while maintaining the fairness among vehicles.
基金the National 863 Program under Grant No. 2006AA01Z173.
文摘Safety-critical system (SCS) has highly demand for dependability, which requires plenty of resource to ensure that the system under test (SUT) satisfies the dependability requirement. In this paper, a new SCS rapid testing method is proposed to improve SCS adaptive dependability testing. The result of each test execution is saved in calculation memory unit and evaluated as an algorithm model. Then the least quantity of scenario test case for next test execution will be calculated according to the promised SUT's confidence level. The feedback data are generated to weight controller as the guideline for the further testing. Finally, a compre- hensive experiment study demonstrates that this adaptive testing method can really work in practice. This rapid testing method, testing result statistics-based adaptive control, makes the SCS dependability testing much more effective.