The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and th...The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and the internal force of roof is deduced by the theory of hingeless arch.The calculation method of roof safety factor(K)under the environment of deep mining is proposed in view of compression failure and shear failure of roof.The calculation formulas of shear safety factor(K1),compression safety factor(K2)and comprehensive safety factor(K)of roof are given.The influence of stope span and roof thickness on roof stability is considered in this paper.The results show that when the roof thickness remains constant,the roof safety factor decreases with the increasing of the stope span;when the stope span remains constant,the roof safety factor increases with the increasing of the roof thickness.The deep mining example shows that when the stope span is 30 m and the roof thickness is 10 m,the roof comprehensive safety factor is 1.12,which indicates the roof is in a stable state.展开更多
The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but req...The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but require assumptions that limit its potentiality. Limit analysis does not require detrimental assumptions but are numerically demanding. This work provides a new approach that combines the advantage of both the equilibrium method and the limit analysis. The defined hybrid model allows probabilistic analysis and optimization approaches without the assumption of interslice forces. It is compared with a published case and used to perform probabilistic studies in both a homogeneous and a layered foundation. Analyses show that the shape of the density probability functions is highly relevant when computing the probability of failure, and soil elasticity hardly affects the safety of factor of the earth mass.展开更多
Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little att...Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.展开更多
Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration reg...Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall.展开更多
A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This res...Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This research presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method.The algorithm can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism.One of the main features of this algorithm is its ability to determine the critical condition of failure wedges,the minimum safety factor and maximum force acting on the wall,as well as the minimum weight of the wall,simultaneously,by effectively using the multi-objective optimization.The results obtained by the proposed failure mechanisms show that,while using the upper bound limit analysis approach,the active force should be maximized concurrent with optimizing the direction of the plane passing through the back of the heel.The present study also applies the proposed algorithm to determine the critical direction of the earthquake acceleration coefficient.The critical direction of earthquake acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the safety factor for wall stability.The results obtained in this study are in good agreement with those of similar studies carried out based on the limit equilibrium method and finite element analysis.The critical failure mechanisms were determined via optimization with genetic algorithm.展开更多
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and...A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.展开更多
In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of th...In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process.展开更多
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it...Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.展开更多
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ...The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.展开更多
An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China w...An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China were reviewed and the fimctions of drainage tunnel were categorized as catchment and interception. Numerical simulations were conducted. The results show that both catchment and interception tunnels have variation of the function in the simulation of monolayer model, which shows the reduction of permeability condition in lower layer. The function of catchment can be observed in the deep slope, while the function of interception is observed near groundwater source. By using the slope safety factor and discharge water amount as the objectives of optimal drainage tunnel location, and pore-water pressure in fixed node and section flux as the judgment for construction quality of adjacent drainage tunnel, the design principle of drainage tunnel was introduced. The K103 Landslide was illustrated as an example to determine the optimal drainage tunnel location. The measured drainage tunnel efficiency was evaluated and compared with that from the numerical analyses based on groundwater data. The results validate the present numerical study.展开更多
A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iterati...A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.展开更多
The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was e...The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was established and based on relevant analysis,the original model could be transformed by minimax method.Then,the optimal order quantity and production quantity influenced by service level constraint were analyzed and the boundary of optimal order quantity and production quantity was given.According to this boundary,the effective method and tactics were put forward to solve the transformed model.In case analysis,the optimal expected total cost of two-echelon inventory can be obtained and it was analyzed how service level constraint and safety factor influence the optimal expected total cost of two-echelon inventory.The results show that the optimal expected total cost of two-echelon inventory is constrained by the higher constraint between service level constraint and safety factor.展开更多
Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui...Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.展开更多
Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pres...Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pressure on the factor of safety for shallow tunnel,the power of pore pressure is regarded as a power of external force in the energy calculation.Using the rigid multiple-block failure mechanism,the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming.According to the results of optimization calculation,the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained.The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.展开更多
Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of...Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.展开更多
In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simpl...In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.展开更多
In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-...In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.展开更多
According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo...According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.展开更多
Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip su...Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface.展开更多
基金Projects(51974135,51704094)supported by the National Natural Science Foundation of ChinaProject(2016YFC0600802)supported by the National Key Research and Development Program of ChinaProject(2020M672226)supported by the China Postdoctoral Science Foundation。
文摘The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and the internal force of roof is deduced by the theory of hingeless arch.The calculation method of roof safety factor(K)under the environment of deep mining is proposed in view of compression failure and shear failure of roof.The calculation formulas of shear safety factor(K1),compression safety factor(K2)and comprehensive safety factor(K)of roof are given.The influence of stope span and roof thickness on roof stability is considered in this paper.The results show that when the roof thickness remains constant,the roof safety factor decreases with the increasing of the stope span;when the stope span remains constant,the roof safety factor increases with the increasing of the roof thickness.The deep mining example shows that when the stope span is 30 m and the roof thickness is 10 m,the roof comprehensive safety factor is 1.12,which indicates the roof is in a stable state.
基金founded by FEDER Funds through Programa Operacional Factores de Competitividade-COMPETEby Portuguese Funds through FCT–Fundacao para a Ciencia e a Tecnologiathe projects PEst –C/MAT/UI0013/2011 and PEst–OE/ECM/UI4047/2011
文摘The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but require assumptions that limit its potentiality. Limit analysis does not require detrimental assumptions but are numerically demanding. This work provides a new approach that combines the advantage of both the equilibrium method and the limit analysis. The defined hybrid model allows probabilistic analysis and optimization approaches without the assumption of interslice forces. It is compared with a published case and used to perform probabilistic studies in both a homogeneous and a layered foundation. Analyses show that the shape of the density probability functions is highly relevant when computing the probability of failure, and soil elasticity hardly affects the safety of factor of the earth mass.
基金Project(2017YFB1201204)supported by the National Key R&D Program of ChinaProject(1053320190957)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.
基金Project(2010(A)06-b)supported by the Scientific Research Fund of Yunnan Provincial Transport Department of ChinaProject(51108293)supported by the National Natural Science Foundation of China+1 种基金Project(2013PY37)supported by the Cultivated Foundation of Taizhou University of ChinaProject(LY13E080008)supported by the Zhejiang Provincial Natural Science Foundation of China
文摘Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall.
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
文摘Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This research presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method.The algorithm can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism.One of the main features of this algorithm is its ability to determine the critical condition of failure wedges,the minimum safety factor and maximum force acting on the wall,as well as the minimum weight of the wall,simultaneously,by effectively using the multi-objective optimization.The results obtained by the proposed failure mechanisms show that,while using the upper bound limit analysis approach,the active force should be maximized concurrent with optimizing the direction of the plane passing through the back of the heel.The present study also applies the proposed algorithm to determine the critical direction of the earthquake acceleration coefficient.The critical direction of earthquake acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the safety factor for wall stability.The results obtained in this study are in good agreement with those of similar studies carried out based on the limit equilibrium method and finite element analysis.The critical failure mechanisms were determined via optimization with genetic algorithm.
基金Project(50878082)supported by the National Natural Science Foundation of ChinaProject(2012C21058)supported by the Public Welfare Technology Application Research of Zhejiang Province,China
文摘A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.
基金Project(51808116) supported by the National Natural Science Foundation of ChinaProject(BK20180404) supported by the Natural Science Foundation of Jiangsu Province, China+1 种基金Project(KFJ170106) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology,ChinaProject(242020R40133) supported by Fundamental Research Funds for the Central Universities, China。
文摘In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process.
基金Project(2006318802111) supported by West Traffic Construction Science and Technology of ChinaProject(2008yb004) supported by Excellent Doctorate Dissertations of Central South University, China Project(2008G032-3) supported by Key Item of Science and Technology Research of Railway Ministry of China
文摘Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.
基金Project(11102218) supported by the National Natural Science Foundation of China
文摘The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.
基金Foundation item: Project(1220BAK10B06) supported by the National "Twelfth Five-Year" Plan for Science & Technology Support Program of China Project(20100101110026) supported by the PhD Programs Foundation of Ministry of Education of China Project(2009RS0050) supported by the Key Innovation Team Support Fund of Zhejiang Province, China
文摘An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China were reviewed and the fimctions of drainage tunnel were categorized as catchment and interception. Numerical simulations were conducted. The results show that both catchment and interception tunnels have variation of the function in the simulation of monolayer model, which shows the reduction of permeability condition in lower layer. The function of catchment can be observed in the deep slope, while the function of interception is observed near groundwater source. By using the slope safety factor and discharge water amount as the objectives of optimal drainage tunnel location, and pore-water pressure in fixed node and section flux as the judgment for construction quality of adjacent drainage tunnel, the design principle of drainage tunnel was introduced. The K103 Landslide was illustrated as an example to determine the optimal drainage tunnel location. The measured drainage tunnel efficiency was evaluated and compared with that from the numerical analyses based on groundwater data. The results validate the present numerical study.
基金Project(50874064) supported by the National Natural Science Foundation of ChinaKey Project(Z2007F10) supported by the Natural Science Foundation of Shandong Province,China
文摘A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.
基金Project(71102174,71372019)supported by the National Natural Science Foundation of ChinaProject(9123028)supported by the Beijing Natural Science Foundation of China+3 种基金Project(20111101120019)supported by the Specialized Research Fund for Doctoral Program of Higher Education of ChinaProject(11JGC106)supported by the Beijing Philosophy&Social Science Foundation of ChinaProjects(NCET-10-0048,NCET-10-0043)supported by the Program for New Century Excellent Talents in University of ChinaProject(2010YC1307)supported by Excellent Young Teacher in Beijing Institute of Technology of China
文摘The decision-making and optimization of two-echelon inventory coordination were analyzed with service level constraint and controllable lead time sensitive to order quantity.First,the basic model of this problem was established and based on relevant analysis,the original model could be transformed by minimax method.Then,the optimal order quantity and production quantity influenced by service level constraint were analyzed and the boundary of optimal order quantity and production quantity was given.According to this boundary,the effective method and tactics were put forward to solve the transformed model.In case analysis,the optimal expected total cost of two-echelon inventory can be obtained and it was analyzed how service level constraint and safety factor influence the optimal expected total cost of two-echelon inventory.The results show that the optimal expected total cost of two-echelon inventory is constrained by the higher constraint between service level constraint and safety factor.
基金Project(2015M580702)supported by China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122066)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.
基金Project(51178468) supported by the National Natural Science Foundation of ChinaProject(2010bsxt07) supported by the Doctoral Dissertation Innovation Fund of Central South University,China
文摘Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pressure on the factor of safety for shallow tunnel,the power of pore pressure is regarded as a power of external force in the energy calculation.Using the rigid multiple-block failure mechanism,the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming.According to the results of optimization calculation,the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained.The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.
文摘Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.
基金Project(kfj110207) supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport,China
文摘In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.
基金Project(51608541)supported by the National Natural Science Foundation of ChinaProject(2015M580702)supported by the Postdoctoral Science Foundation of ChinaProject(201508)supported by the Postdoctoral Science Foundation of Central South University,China
文摘In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.
基金Project(50911130366) supported by the National Natural Science Foundation of China
文摘According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.
基金Project(2015M580702)supported by the China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface.