On a narrow warship platform,the coordinated use of shipborne weapon systems may cause firepower conflicts,which seriously endangers the ship safety.Meanwhile,with directed-energy weapons mounted on ships,firepower co...On a narrow warship platform,the coordinated use of shipborne weapon systems may cause firepower conflicts,which seriously endangers the ship safety.Meanwhile,with directed-energy weapons mounted on ships,firepower conflicts between weapons become a“high probability event”.Aiming at the problem of firepower safety control,based on the research about the collision probability model of air crafts and space targets and according to the cone of fire model of conventional weapons and directed-energy weapons,this paper solved the firepower conflict probabilities between conventional weapons as well as between conventional weapons and directed-energy weapons respectively using the methods of probability theory,and established the firepower safety control model.Then the calculation of firepower conflict probability was carried out using the dimensionality reduction method based on the equivalent conversion of polar coordinates and the power series method based on Laplace transform.The simulation results revealed that the proposed model and calculation methods are effective and reliable,which can provide theoretical basis and technical support for resolution of firepower conflicts between weapons.展开更多
This research is dedicated to develop a safety measurement for human-machine cooperative system, in which the machine region and the human region cannot be separated due to the overlap and the movement both from human...This research is dedicated to develop a safety measurement for human-machine cooperative system, in which the machine region and the human region cannot be separated due to the overlap and the movement both from human and from machines. Our proposal here is to automatically monitor the moving objects by image sensing/recognition method, such that the machine system can get enough information about the environment situation and about the production progress at any time, and therefore the machines can accordingly take some corresponding actions automatically to avoid hazard. For this purpose, two types of monitor systems are proposed. The first type is based on the omni directional vision sensor, and the second is based on the stereo vision sensor. Each type may be used alone or together with another type, depending on the safety system's requirements and the specific situation of the manufacture field to be monitored. In this paper, the description about these two types are given, and as for the special application of these image sensors into safety control, the construction of a hierarchy safety system is proposed.展开更多
文摘On a narrow warship platform,the coordinated use of shipborne weapon systems may cause firepower conflicts,which seriously endangers the ship safety.Meanwhile,with directed-energy weapons mounted on ships,firepower conflicts between weapons become a“high probability event”.Aiming at the problem of firepower safety control,based on the research about the collision probability model of air crafts and space targets and according to the cone of fire model of conventional weapons and directed-energy weapons,this paper solved the firepower conflict probabilities between conventional weapons as well as between conventional weapons and directed-energy weapons respectively using the methods of probability theory,and established the firepower safety control model.Then the calculation of firepower conflict probability was carried out using the dimensionality reduction method based on the equivalent conversion of polar coordinates and the power series method based on Laplace transform.The simulation results revealed that the proposed model and calculation methods are effective and reliable,which can provide theoretical basis and technical support for resolution of firepower conflicts between weapons.
文摘This research is dedicated to develop a safety measurement for human-machine cooperative system, in which the machine region and the human region cannot be separated due to the overlap and the movement both from human and from machines. Our proposal here is to automatically monitor the moving objects by image sensing/recognition method, such that the machine system can get enough information about the environment situation and about the production progress at any time, and therefore the machines can accordingly take some corresponding actions automatically to avoid hazard. For this purpose, two types of monitor systems are proposed. The first type is based on the omni directional vision sensor, and the second is based on the stereo vision sensor. Each type may be used alone or together with another type, depending on the safety system's requirements and the specific situation of the manufacture field to be monitored. In this paper, the description about these two types are given, and as for the special application of these image sensors into safety control, the construction of a hierarchy safety system is proposed.