A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
针对K-means算法需要人为确定聚类个数和随机选取初始聚类中心导致结果陷入局部最优的问题,结合基于密度峰值的聚类算法CFSFDP(Clustering by Fast Search and Find of Density Peaks),提出一种改进的无参数K-means算法。首先,计算样本...针对K-means算法需要人为确定聚类个数和随机选取初始聚类中心导致结果陷入局部最优的问题,结合基于密度峰值的聚类算法CFSFDP(Clustering by Fast Search and Find of Density Peaks),提出一种改进的无参数K-means算法。首先,计算样本点的局部密度和离散度。然后,建立决策图,将两个参数组成向量,计算每个点到周围5个点的距离,筛选出距离大于2倍均方差且密度大于平均密度的点作为算法的初始聚类中心,统计聚类中心个数k作为聚类个数,将初始聚类个数k以及初始聚类中心作为K-means算法的初始参数对数据进行聚类。最后,对UCI(University of California,Irvine)数据集、人工建立的高斯数据集以及真实刀具振动数据集3种不同类型的数据集进行聚类。结果表明,所提算法保持传统算法全局最优性,并验证了提出算法的有效性。由于K-means是一种无监督聚类方法,在获得较优刀具状态识别结果的同时,可减少人工数据标定、有监督训练等工作量及运算成本,这对于准确实时提取数控机床刀具运行状态具有较高的实际意义。展开更多
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
文摘针对K-means算法需要人为确定聚类个数和随机选取初始聚类中心导致结果陷入局部最优的问题,结合基于密度峰值的聚类算法CFSFDP(Clustering by Fast Search and Find of Density Peaks),提出一种改进的无参数K-means算法。首先,计算样本点的局部密度和离散度。然后,建立决策图,将两个参数组成向量,计算每个点到周围5个点的距离,筛选出距离大于2倍均方差且密度大于平均密度的点作为算法的初始聚类中心,统计聚类中心个数k作为聚类个数,将初始聚类个数k以及初始聚类中心作为K-means算法的初始参数对数据进行聚类。最后,对UCI(University of California,Irvine)数据集、人工建立的高斯数据集以及真实刀具振动数据集3种不同类型的数据集进行聚类。结果表明,所提算法保持传统算法全局最优性,并验证了提出算法的有效性。由于K-means是一种无监督聚类方法,在获得较优刀具状态识别结果的同时,可减少人工数据标定、有监督训练等工作量及运算成本,这对于准确实时提取数控机床刀具运行状态具有较高的实际意义。