Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of ...Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of grain size on structure and diffusion properties of the nanograins. The results reveal that as the grain size is reduced, the fraction of grain surface increases significantly, and the surface width is approximately constant; the mean atomic energy of the surface increases distinctly, but that of the grain interior varies insignificantly; the diffusion coefficient is increased sharply, and the relation of the diffusion coefficient and the grain size is close to exponential relation below 10 nm.展开更多
A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode ...A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode type of Cassini wave-guide belongs to TE, and the electromagnetic field intensity is stronger near the neck region than at other areas. For Cassini electromagnetic patches and lumped elements, the radar cross section (RCS) is smaller around 7 GHz with -30.85 dBsm, and the absorbing property is better around 13 GHz with 4.56 dBsm difference of RCS from comparing of pure medium. For novel radiation structure of Cassini cross-section patches, the electromagnetic field value is larger in the neck areas of two half patches. At last, the potential application and development of Cassini oval structure are put forward in the electromagnetic stealth technology and antennae design.展开更多
Movable cellular automata (MCA) method is applied in the analysis of dynamic characters of ceramic armor composite structures under impact loading. As a new approach, MCA is different from the traditional numerical me...Movable cellular automata (MCA) method is applied in the analysis of dynamic characters of ceramic armor composite structures under impact loading. As a new approach, MCA is different from the traditional numerical methods such as the finite element method and boundary element method. Based on the theory of particle mechanics, MCA is applied as a powerful tool in solving specific structural analysis of materials loss and penetrating damages. In this paper the method is used to study responses of multi-layered ceramic plates as a base of armor structures under impact loading, thus assisting further investigations in the crashing process and to improve ceramic armor structures.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
The distribution of Al (j) and the structural units distribution of Qi T in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-fie...The distribution of Al (j) and the structural units distribution of Qi T in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al3+, such as alkaline and alkaline earth metals, Al will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si4+ and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of Qi T with chemical composition shift was also extracted, showing that as Ca2+ exists, the distributions of Qi Si, Qi Al or Qi T have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3)Al(4) and (Al(5))Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phenomena of the negative charge redundancy of AlO4 and location of network modifier with charge-compensated function in aluminosilicate melts.展开更多
The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is establishe...The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program.Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25-0.5 cm and 1-3 cm.The Euler--fluxcorrected transport solver is found to be suitable for the far-field calculation after mapping.A numerical simulation is conducted to study the formation,propagation,and interaction of the shock wave of the composite charge for different initiation modes.It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge.Additionally,it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation,and the peak pressure of the shock wave exponentially decays,fitting the calculation formula of the peak overpressure attenuation under different initiation modes,which is obtained and verified by experiment.The difference between numerical and experimental results is less than 10%,and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation.展开更多
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod...In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.展开更多
The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a specia...The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge,in which case the crushing energy of LEFP could be guaranteed.LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points,the length of shell platform,the radius of curvature and the thickness of liner.The RSM(response surface model)between the molding parameters of LEFP and the structural parameters of charge was established.Based on RSM model,the structure of shaped charge was optimized by using multi-objective genetic algorithm.Meanwhile,the formation process of jet was analyzed by pulsed X-ray photography.The results show that the velocity,length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge.After the optimization of charge structure,the forming effect and penetration ability of LEPP had been significantly improved.The experimental data of jet velocity and length were consistent with the numerical results,which verifies the reliability of the numerical results.展开更多
In this study,a nonlinear three-dimensional hydrocode numerical simulation was carried out using AUTODYN-3D to investigate the effect of blasting of a high explosive material(TNT)against several configurations of the ...In this study,a nonlinear three-dimensional hydrocode numerical simulation was carried out using AUTODYN-3D to investigate the effect of blasting of a high explosive material(TNT)against several configurations of the composite structure.Several numerical models were carried out to study the effect of varying the thickness of the walls and the effect of adding an air layer or aluminum foam layer inside two layers of concrete in mitigating the effect of blast waves on the structure walls.The results showed that increasing the thickness of walls has a good effect on mitigating the effect of blast waves.When a layer of air was added,the effect of blast waves was exaggerated,while when a layer of aluminum foam was added the blast wave effects were mitigated with a reasonable percentage.展开更多
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me...Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.展开更多
This paper put forward a new-type vortex generator enhancing heat exchange of solar air-drier and air-heater on the gas side,and investigated the mechanism of heat transfer enhancement and drag reduction by the influe...This paper put forward a new-type vortex generator enhancing heat exchange of solar air-drier and air-heater on the gas side,and investigated the mechanism of heat transfer enhancement and drag reduction by the influence of vortex generators on the coherent structure of turbulent boundary layer.The flow and heat transfer characteristics of rectangle channel with bevel-cut half-elliptical column vortex generators were obtained using large eddy simulation(LES)and the hydromechanics software FLUENT6.3.The instantaneous properties of velocity,temperature and pressure in channel were gained.The coherent structure of turbulent boundary layer flow was showed,and the characteristic of vortex induced by inclined-cut semi-ellipse vortex generator and its influence on turbulent coherent structure were analyzed.And the effect mechanism of turbulent coherent structure on flow field,pressure field and temperature field was discussed.Based on the results,the heat transfer coefficient and drag reduction of the new vortex generator with different pitch angles were compared.Sometimes,the coherent effects of the increased wall heat transfer and the decreased skin friction do not satisfy the Reynolds analogy.The turbulent coherent structure can be controlled through the geometry of the vortex generator,so the heat transfer and drag reduction can also be controlled.Then we can seek suitable form of vortex generator and structure parameters,in order to achieve the enhanced heat transfer and flow of drag reduction in the solar air-heater and solar air-drier.展开更多
This paper presents a combination of experimental and numerical investigations on the dynamic response of scaling cabin structures under internal blast loading.The purpose of this study is to modify the similar relati...This paper presents a combination of experimental and numerical investigations on the dynamic response of scaling cabin structures under internal blast loading.The purpose of this study is to modify the similar relationship between the scaled-down model and the prototype of the cabin structures under internal blast loading.According to the Hopkinson’s scaling law,three sets of cabin structure models with different scaling factors combined with different explosive masses were designed for the experimental study.The dynamic deformation process of the models was recorded by a three-dimensional digital imaging correlation(DIC)method and a 3D scanning technology was used to reconstruct the deformation modes of the specimen.In addition,a finite element model was developed for the modification of the scaling law.The experimental results showed that the final deflection-to-thickness ratio was increased with the increase of the model size despite of the similar trend of their deformation processes.The reason for this inconsistency was discussed based on the traditional scaling law and a modified formula considering of the effects of size and strain-rate was provided.展开更多
The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) m...The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.展开更多
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p...To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.展开更多
Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and ...Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.展开更多
Vertical structure of an unconformity can be divided into three layers:basal conglomerate or transgressive sand,weathered clay layer and leached rock.When the weathered clay layer has a little thickness or limited dis...Vertical structure of an unconformity can be divided into three layers:basal conglomerate or transgressive sand,weathered clay layer and leached rock.When the weathered clay layer has a little thickness or limited distribution,the overlying and underlying strata will contact directly,and the lithology is often different.This lithologic difference causes different fluid transporting capacity,and it also展开更多
Using embedded atom method and molecular static relaxation method, the core structure of <100>, <110> edge dislocations, <100> screw dislocation, the interaction between point defects and <100>...Using embedded atom method and molecular static relaxation method, the core structure of <100>, <110> edge dislocations, <100> screw dislocation, the interaction between point defects and <100> edge dislocation in NiAl intermetallics were investigated. The results show that <100>edge dislocation expands along and orientation on the (001) slip plane. The core structure of <100> edge dislocation on (001) plane is like a 'butterfly', while it is very compact when it lies on {110} slip plane. So NiAl will have a <100>{110} slip system in stead of <100>{100} slip system, as experiments showed. <110> edge dislocation has a more expanded core structure and the atoms of dislocation core distort more heavily. None dislocation dissociation was found in the studied dislocations. The outlines of dislocation core structures change very little after a row of point defects are introduced in them, which can be explained by point defects' little effects on the stress field around dislocation core. The results also show that it is hard to change dislocation core structure by decreasing alloy order using the method of introducing limited point defects into the alloy.展开更多
Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we em...Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.展开更多
The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are se...The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are several dynamic finite element algorithms that can be applied to the deflation simulation, their computation costs are expensive, especially for large scale structures. In this work, a simple method based on classic thermodynamics and the analytical relationship between air and membrane was proposed to efficiently analyze the air state variables under the condition of ventilation. Combined with failure analysis of static bearing capacity, a fast incremental analytical method was presented to predict both elastic and post wrinkling deflation process of inflatable structures. Comparisons between simplified analysis, dynamic finite element simulation, and a full-scale experimental test are presented and the suitability of this simple method for solving the air state and predicting the deflation behavior of inflatable structures is proved.展开更多
基金supported by the National Naturl Science Foundation of China(No.10172088)the Potdoctoral Saience Foundation of China
文摘Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of grain size on structure and diffusion properties of the nanograins. The results reveal that as the grain size is reduced, the fraction of grain surface increases significantly, and the surface width is approximately constant; the mean atomic energy of the surface increases distinctly, but that of the grain interior varies insignificantly; the diffusion coefficient is increased sharply, and the relation of the diffusion coefficient and the grain size is close to exponential relation below 10 nm.
文摘A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode type of Cassini wave-guide belongs to TE, and the electromagnetic field intensity is stronger near the neck region than at other areas. For Cassini electromagnetic patches and lumped elements, the radar cross section (RCS) is smaller around 7 GHz with -30.85 dBsm, and the absorbing property is better around 13 GHz with 4.56 dBsm difference of RCS from comparing of pure medium. For novel radiation structure of Cassini cross-section patches, the electromagnetic field value is larger in the neck areas of two half patches. At last, the potential application and development of Cassini oval structure are put forward in the electromagnetic stealth technology and antennae design.
文摘Movable cellular automata (MCA) method is applied in the analysis of dynamic characters of ceramic armor composite structures under impact loading. As a new approach, MCA is different from the traditional numerical methods such as the finite element method and boundary element method. Based on the theory of particle mechanics, MCA is applied as a powerful tool in solving specific structural analysis of materials loss and penetrating damages. In this paper the method is used to study responses of multi-layered ceramic plates as a base of armor structures under impact loading, thus assisting further investigations in the crashing process and to improve ceramic armor structures.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
文摘The distribution of Al (j) and the structural units distribution of Qi T in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al3+, such as alkaline and alkaline earth metals, Al will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si4+ and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of Qi T with chemical composition shift was also extracted, showing that as Ca2+ exists, the distributions of Qi Si, Qi Al or Qi T have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3)Al(4) and (Al(5))Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phenomena of the negative charge redundancy of AlO4 and location of network modifier with charge-compensated function in aluminosilicate melts.
基金funded by the National Natural Science Foundation of China under NO.11202103Qing-lan Project of Jiangsu Province。
文摘The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program.Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25-0.5 cm and 1-3 cm.The Euler--fluxcorrected transport solver is found to be suitable for the far-field calculation after mapping.A numerical simulation is conducted to study the formation,propagation,and interaction of the shock wave of the composite charge for different initiation modes.It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge.Additionally,it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation,and the peak pressure of the shock wave exponentially decays,fitting the calculation formula of the peak overpressure attenuation under different initiation modes,which is obtained and verified by experiment.The difference between numerical and experimental results is less than 10%,and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation.
基金Project(U1534210)supported by the National Natural Science Foundation of ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2015CX003)supported by the Project of Innovation-driven Plan in Central South University,ChinaProject(14JC1003)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2015T002-A)supported by the Technological Research and Development program of China Railways Cooperation
文摘In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.
基金supported by the National Natural Science Foundation of China(Grant No.11772061)。
文摘The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge,in which case the crushing energy of LEFP could be guaranteed.LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points,the length of shell platform,the radius of curvature and the thickness of liner.The RSM(response surface model)between the molding parameters of LEFP and the structural parameters of charge was established.Based on RSM model,the structure of shaped charge was optimized by using multi-objective genetic algorithm.Meanwhile,the formation process of jet was analyzed by pulsed X-ray photography.The results show that the velocity,length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge.After the optimization of charge structure,the forming effect and penetration ability of LEPP had been significantly improved.The experimental data of jet velocity and length were consistent with the numerical results,which verifies the reliability of the numerical results.
文摘In this study,a nonlinear three-dimensional hydrocode numerical simulation was carried out using AUTODYN-3D to investigate the effect of blasting of a high explosive material(TNT)against several configurations of the composite structure.Several numerical models were carried out to study the effect of varying the thickness of the walls and the effect of adding an air layer or aluminum foam layer inside two layers of concrete in mitigating the effect of blast waves on the structure walls.The results showed that increasing the thickness of walls has a good effect on mitigating the effect of blast waves.When a layer of air was added,the effect of blast waves was exaggerated,while when a layer of aluminum foam was added the blast wave effects were mitigated with a reasonable percentage.
基金Project(51275542) supported by the National Natural Science Foundation of Chinaproject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.
基金Supported by National Natural Science Foundation of China(50676027)
文摘This paper put forward a new-type vortex generator enhancing heat exchange of solar air-drier and air-heater on the gas side,and investigated the mechanism of heat transfer enhancement and drag reduction by the influence of vortex generators on the coherent structure of turbulent boundary layer.The flow and heat transfer characteristics of rectangle channel with bevel-cut half-elliptical column vortex generators were obtained using large eddy simulation(LES)and the hydromechanics software FLUENT6.3.The instantaneous properties of velocity,temperature and pressure in channel were gained.The coherent structure of turbulent boundary layer flow was showed,and the characteristic of vortex induced by inclined-cut semi-ellipse vortex generator and its influence on turbulent coherent structure were analyzed.And the effect mechanism of turbulent coherent structure on flow field,pressure field and temperature field was discussed.Based on the results,the heat transfer coefficient and drag reduction of the new vortex generator with different pitch angles were compared.Sometimes,the coherent effects of the increased wall heat transfer and the decreased skin friction do not satisfy the Reynolds analogy.The turbulent coherent structure can be controlled through the geometry of the vortex generator,so the heat transfer and drag reduction can also be controlled.Then we can seek suitable form of vortex generator and structure parameters,in order to achieve the enhanced heat transfer and flow of drag reduction in the solar air-heater and solar air-drier.
基金the support from the National Natural Science Foundation of China under Grant No. 11902031,No. 11802030 , No. 11802031Beijing Municipal Science and Technology Project Management Approach under No. Z181100004118002
文摘This paper presents a combination of experimental and numerical investigations on the dynamic response of scaling cabin structures under internal blast loading.The purpose of this study is to modify the similar relationship between the scaled-down model and the prototype of the cabin structures under internal blast loading.According to the Hopkinson’s scaling law,three sets of cabin structure models with different scaling factors combined with different explosive masses were designed for the experimental study.The dynamic deformation process of the models was recorded by a three-dimensional digital imaging correlation(DIC)method and a 3D scanning technology was used to reconstruct the deformation modes of the specimen.In addition,a finite element model was developed for the modification of the scaling law.The experimental results showed that the final deflection-to-thickness ratio was increased with the increase of the model size despite of the similar trend of their deformation processes.The reason for this inconsistency was discussed based on the traditional scaling law and a modified formula considering of the effects of size and strain-rate was provided.
基金Project(08BZ1130100) supported by the Science and Technology Committee of Shanghai,ChinaProject(SHUCX102251) supported by the Innovation Fund for Graduate Student of Shanghai University,China
文摘The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.
基金Projects(51104187,51274241,61321003) supported by the National Natural Science Foundation of ChinaProject(20100162120008) supported by Doctoral Fund of Ministry of Education of China
文摘To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.
文摘Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.
文摘Vertical structure of an unconformity can be divided into three layers:basal conglomerate or transgressive sand,weathered clay layer and leached rock.When the weathered clay layer has a little thickness or limited distribution,the overlying and underlying strata will contact directly,and the lithology is often different.This lithologic difference causes different fluid transporting capacity,and it also
文摘Using embedded atom method and molecular static relaxation method, the core structure of <100>, <110> edge dislocations, <100> screw dislocation, the interaction between point defects and <100> edge dislocation in NiAl intermetallics were investigated. The results show that <100>edge dislocation expands along and orientation on the (001) slip plane. The core structure of <100> edge dislocation on (001) plane is like a 'butterfly', while it is very compact when it lies on {110} slip plane. So NiAl will have a <100>{110} slip system in stead of <100>{100} slip system, as experiments showed. <110> edge dislocation has a more expanded core structure and the atoms of dislocation core distort more heavily. None dislocation dissociation was found in the studied dislocations. The outlines of dislocation core structures change very little after a row of point defects are introduced in them, which can be explained by point defects' little effects on the stress field around dislocation core. The results also show that it is hard to change dislocation core structure by decreasing alloy order using the method of introducing limited point defects into the alloy.
文摘Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.
基金Projects(51178263,51378307)supported by the National Natural Science Foundation of China
文摘The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are several dynamic finite element algorithms that can be applied to the deflation simulation, their computation costs are expensive, especially for large scale structures. In this work, a simple method based on classic thermodynamics and the analytical relationship between air and membrane was proposed to efficiently analyze the air state variables under the condition of ventilation. Combined with failure analysis of static bearing capacity, a fast incremental analytical method was presented to predict both elastic and post wrinkling deflation process of inflatable structures. Comparisons between simplified analysis, dynamic finite element simulation, and a full-scale experimental test are presented and the suitability of this simple method for solving the air state and predicting the deflation behavior of inflatable structures is proved.