期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rotational parameters estimation of maneuvering target in ISAR imaging 被引量:1
1
作者 Wenchen Li Jin Liu +2 位作者 Xuesong Wang Shunping Xiao Guoyu Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期41-46,共6页
The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal mod... The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal model of rotating target with fixed acceleration is presented and the weighted linear least squares estimation of rotational parameters with fixed velocity or acceleration is proposed via the relationship of cross-range FM (frequency modulation) parameter, scatterers coordinates and rotational parameters. The FM parameter is calculated via RWT (Radon-Wigner transform). The ISAR imaging and cross-range scaling based on scaled RWT imaging method are implemented after obtaining rotational parameters. The rotational parameters estimation and cross-range scaling are validated by the ISAR processing of experimental radar data, and the method presents good application foreground to the ISAR imaging and scaling of maneuvering target. 展开更多
关键词 inverse synthetic aperture radar maneuvering target rotational parameters estimation cross-range scaling scaled Radon-Wigner transform imaging.
在线阅读 下载PDF
Temporal-spatial subspaces modern combination method for 2D-DOA estimation in MIMO radar 被引量:9
2
作者 Youssef Fayad Caiyun Wang Qunsheng Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期697-702,共6页
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ... A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance. 展开更多
关键词 direction of arrival estimation (DOAE) temporal subspace spatial subspace estimating signal parameters via rotational invariance technique (ESPRIT)
在线阅读 下载PDF
Low-complexity method for DOA estimation based on ESPRIT 被引量:8
3
作者 Xuebin Zhuang Xiaowei Cui Mingquan Lu Zhenming Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期729-733,共5页
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult... A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method. 展开更多
关键词 direction of arrival(DOA) multistage Wiener filter(MSWF) conjugate gradient(CG) estimation signal parameters via rotational invariance technique(ESPRIT) eigenvalue decomposition(EVD).
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部