The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field mode...The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear.展开更多
If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in t...If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall fiN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t...A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.展开更多
Based on the theoretical analysis of nonlinear random response of structure, for the engineering practical problem, that is, the large deformation of industry cooling tower shell structure under the action of strong w...Based on the theoretical analysis of nonlinear random response of structure, for the engineering practical problem, that is, the large deformation of industry cooling tower shell structure under the action of strong wind loads, the statistic perturbation method is also used to analyze some statistic characteristics of the nonlinear random response of rotational shell with geometric nonlinearity and stationary strong wind load considered. Through computation, some average values of nornal displacements and the nonlinear effect factor of the cooling tower shell are given.展开更多
To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction...To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.展开更多
The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, ...The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.展开更多
The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitr...The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.展开更多
Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronol...Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months.展开更多
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c...The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.展开更多
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme...The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.展开更多
A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about th...A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.展开更多
This article theoretically studies the influence of inhomogeneous abdominal walls on focused therapeutic ultrasound based on the phase screen model. An inhomogeneous tissue is considered as a combination of a homogene...This article theoretically studies the influence of inhomogeneous abdominal walls on focused therapeutic ultrasound based on the phase screen model. An inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen. Variations of acoustic parameters such as peak positive pressure, peak negative pressure, and acoustic intensity are discussed with respect to the phase screen statistics of human abdominal walls. Results indicate that the abdominal wall can result in energy loss of the sound in the focal plane. For a typical human abdominal wall with correlation length of 7.9 mm and variance of 0.36, the peak acoustic intensity radiated from a 1MHz transmitter with a radius of 30 mm can be reduced by about 14% at the focal plane.展开更多
We study quantum classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the ...We study quantum classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 27r-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.展开更多
This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of...This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of feed thermal condition (q) and middle component composition of feed (cB) on the heat transfer process, the optimal heat transfer region, and the maximum heat transfer quantity across the wall. The simulation results show that the maximum heat transfer quantity across the wall and the potential for energy saving increase with the increase of q, while with the limitation of temperature difference across the wall, the beneficial heat transfer effect between certain range of stages, which are involved in the optimal heat transfer region, cannot be realized completely for a specific value of q. Besides, compared with q, a changing cB does not change the degree of realizing the beneficial heat transfer effect, but can bring about the variation of liquid split ratio (RL) and vapor split ratio (Rv). Thus, for achieving a maximum energy-saving effect of DWC, different q and cB need to find its own corresponding suitable heat transfer process across the wall.展开更多
The“softening”process of the first kind of dumbbell domains(IDs)with the increase of temperature was experimentally revealed as follows:IDs first convert to ordinary hard bubbles(OHBs)through a partial loss of the v...The“softening”process of the first kind of dumbbell domains(IDs)with the increase of temperature was experimentally revealed as follows:IDs first convert to ordinary hard bubbles(OHBs)through a partial loss of the vertical Bloch lines(VBLs)in their walls and then these OHBs convert to soft(normal)bubbles(SBs)through a further loss of VBLs.As a result,the critical temperature for the break down of VBL chains of IDs is apparently higher than OHBs.展开更多
The stereodynamic properties of the reaction C (^3P) + NO (X2^П) →CN (X^2∑^+) + O (^3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory met...The stereodynamic properties of the reaction C (^3P) + NO (X2^П) →CN (X^2∑^+) + O (^3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory method on ^2A″ and ^2A′ potential energy surfaces (PESs) at a collision energy of 0.06 eV. The vector properties in different rotational states on the two surfaces are discussed in detail. The results indicate that the rotational excitation of NO has considerable influence on the stereodynamic property of the reaction occurring on the two surfaces. At the same time, the calculated polarization-dependent differential cross sections (PDDCSs) in different initial rotational states manifest that products are strongly polarized at three scattering angles.展开更多
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012...Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction.展开更多
The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corros...The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants. The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600>SS316L>graphite>SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.展开更多
基金supported by the National MCF Energy R&D Program of China(Nos.2019YFE03090400 and 2019YFE03030004)National Natural Science Foundation of China(Nos.12375222 and 11775154)National Key R&D Program of China(Nos.2017YFE0301203 and 2017YFE0301101)。
文摘The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2012GB105000,2011GB101000,2011GB107000,and 2013013GB102000)the National Natural Science Foundation of China(Grant Nos.10725523,10721505,10090212,111005037,and 11205199)
文摘If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall fiN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.
文摘Based on the theoretical analysis of nonlinear random response of structure, for the engineering practical problem, that is, the large deformation of industry cooling tower shell structure under the action of strong wind loads, the statistic perturbation method is also used to analyze some statistic characteristics of the nonlinear random response of rotational shell with geometric nonlinearity and stationary strong wind load considered. Through computation, some average values of nornal displacements and the nonlinear effect factor of the cooling tower shell are given.
基金National Natural Science Foundation of China(Grant Nos.52075111,51775123)Fundamental Research Funds for the Central Universities(Grant No.3072022JC0701)。
文摘To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1204100)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33030000,ZDBS-SSW-WHC001,YSBR-003,and YSBR-053)Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.
基金partially supported by National Natural Science Foundation of China(No.52477141)the Natural Science Foundation of the Jiangsu Province(No.BK20191162)+2 种基金Fundamental Research Funds for the Central Universities(No.B210203006)the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)Changzhou Science and Technology Program(No.CJ20190046).
文摘The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.
基金supported by the Russian Science Foundation grant no. 23-44-00067the National Natural Science Foundation of China grant no.42261134537 in the framework of a joint Russian-Chinese project (fieldwork)by the Russian Ministry of Science and Higher Education,grant number FSRZ-2023-0007 (for data analysis)
文摘Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months.
基金Grant PID2020-115848RB-C21 "STORELEC" projectTED2021-129694B-C22 "DEFY-CO2" project funded by MCIN/AEI/10.13039/501100011033+3 种基金LMP253_ (2)1 project funded by Gobierno de AragónGrant IJC2019-041874-I funded by the MCIN/AEI/10.13039/501100011033CSIC for her JAE Intro ICU 2021-ICB-04 grantthe Y2020/EMT-6419 "CEOTRES" project funded by the Comunidad Autonoma de Madrid。
文摘The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
基金National Natural Science Foundation of China(Grant Nos.51908188 and 51938011).
文摘The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.
文摘A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.
基金Project supported by the Program for New Century Excellent Talents in University of China (Grant No 06-0450)the National Natural Science Foundation of China (Grant No 10774071)the Natural Science Foundation of Jiangsu Province, China (Grant No BK2007518)
文摘This article theoretically studies the influence of inhomogeneous abdominal walls on focused therapeutic ultrasound based on the phase screen model. An inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen. Variations of acoustic parameters such as peak positive pressure, peak negative pressure, and acoustic intensity are discussed with respect to the phase screen statistics of human abdominal walls. Results indicate that the abdominal wall can result in energy loss of the sound in the focal plane. For a typical human abdominal wall with correlation length of 7.9 mm and variance of 0.36, the peak acoustic intensity radiated from a 1MHz transmitter with a radius of 30 mm can be reduced by about 14% at the focal plane.
基金supported by the National Natural Science Foundation of China (Grant No. 11075099)
文摘We study quantum classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 27r-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.
基金supported by the Natural Science Research Youth Foundation of Hebei Higher Education of China [QN2016084]the National Natural Science Foundation of China[21878066]
文摘This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of feed thermal condition (q) and middle component composition of feed (cB) on the heat transfer process, the optimal heat transfer region, and the maximum heat transfer quantity across the wall. The simulation results show that the maximum heat transfer quantity across the wall and the potential for energy saving increase with the increase of q, while with the limitation of temperature difference across the wall, the beneficial heat transfer effect between certain range of stages, which are involved in the optimal heat transfer region, cannot be realized completely for a specific value of q. Besides, compared with q, a changing cB does not change the degree of realizing the beneficial heat transfer effect, but can bring about the variation of liquid split ratio (RL) and vapor split ratio (Rv). Thus, for achieving a maximum energy-saving effect of DWC, different q and cB need to find its own corresponding suitable heat transfer process across the wall.
基金Supported In part by the National Natural Science Foundation of China.No.1880110.
文摘The“softening”process of the first kind of dumbbell domains(IDs)with the increase of temperature was experimentally revealed as follows:IDs first convert to ordinary hard bubbles(OHBs)through a partial loss of the vertical Bloch lines(VBLs)in their walls and then these OHBs convert to soft(normal)bubbles(SBs)through a further loss of VBLs.As a result,the critical temperature for the break down of VBL chains of IDs is apparently higher than OHBs.
基金supported by the National Natural Science Foundation of China (Grant No. 41075027)
文摘The stereodynamic properties of the reaction C (^3P) + NO (X2^П) →CN (X^2∑^+) + O (^3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory method on ^2A″ and ^2A′ potential energy surfaces (PESs) at a collision energy of 0.06 eV. The vector properties in different rotational states on the two surfaces are discussed in detail. The results indicate that the rotational excitation of NO has considerable influence on the stereodynamic property of the reaction occurring on the two surfaces. At the same time, the calculated polarization-dependent differential cross sections (PDDCSs) in different initial rotational states manifest that products are strongly polarized at three scattering angles.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074103,10974078,and 11174117)the Discipline Construction Fund of Ludong University,China
文摘Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Science(No.XDA02030000)
文摘The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants. The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600>SS316L>graphite>SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.