期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
A new damage constitutive model for rock strain softening based on an improved Logistic function
1
作者 GUO Yun-peng LIU Dong-qiao +1 位作者 YANG Sheng-kai LI Jie-yu 《Journal of Central South University》 2025年第8期3070-3094,共25页
This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening ... This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve. 展开更多
关键词 rock mechanics strain softening improved Logistic function S-shaped model damage evolution constitutive model
在线阅读 下载PDF
Research on damage characteristics and constitutive model of rock mass under true triaxial cyclic loading based on acoustic emission
2
作者 LI Ying-ming FAN Chao-tao +6 位作者 DONG Chun-liang ZHAO Guang-ming MENG Xiang-rui WANG Xiang-jun SHI Wen-qiu WU Xin-wen GAO Jiang-huai 《Journal of Central South University》 2025年第5期1938-1954,共17页
Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and int... Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2). 展开更多
关键词 rock mechanics true triaxial cyclic principal stress acoustic emission constitutive model damage variable
在线阅读 下载PDF
Rockburst proneness criteria for rock materials:Review and new insights 被引量:60
3
作者 GONG Feng-qiang WANG Yun-liang LUO Song 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2793-2821,共29页
To review the rockburst proneness(or tendency)criteria of rock materials and compare the judgment accuracy of them,twenty criteria were summarized,and their judgment accuracy was evaluated and compared based on the la... To review the rockburst proneness(or tendency)criteria of rock materials and compare the judgment accuracy of them,twenty criteria were summarized,and their judgment accuracy was evaluated and compared based on the laboratory tests on fourteen types of rocks.This study begins firstly by introducing the twenty rockburst proneness criteria,and their origins,definitions,calculation methods and grading standards were summarized in detail.Subsequently,to evaluate and compare the judgment accuracy of the twenty criteria,a series of laboratory tests were carried out on fourteen types of rocks,and the rockburst proneness judgment results of the twenty criteria for the fourteen types of rocks were obtained accordingly.Moreover,to provide a unified basis for the judgment accuracy evaluation of above criteria,a classification standard(obtained according to the actual failure results and phenomena of rock specimen)of rockburst proneness in laboratory tests was introduced.The judgment results of the twenty criteria were compared with the judgment results of this classification standard.The results show that the judgment results of the criterion based on residual elastic energy(REE)index are completely consistent with the actual rockburst proneness,and the other criteria have some inconsistent situations more or less.Moreover,the REE index is based on the linear energy storage law and defined in form of a difference value and considered the whole failure process,and these superior characteristics ensure its accuracy.It is believed that the criterion based on REE index is comparatively more accurate and scientific than other criteria,and it can be recommended to be applied to judge the rockburst proneness of rock materials. 展开更多
关键词 deep rock rockBURST rockburst proneness rockburst proneness criterion rock mechanics
在线阅读 下载PDF
Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures 被引量:14
4
作者 黄彦华 杨圣奇 曾卫 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1474-1485,共12页
A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strai... A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strain curves,mechanical properties,AE events,cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates.Investigated results show that:1)When the loading rate is relatively low,the stress-strain curves show a brittle response.When the loading rate is relatively high,the curve shows a more ductile response.Both of the peak strength and elastic mudulus increase with the increase of loading rate,which can be expressed as power functions.2)Four crack types are identified,i.e.,tensile crack,shear crack,far-field crack and surface spalling.Moreover,the tensile crack,far-field crack and surface spalling are under tensile mechanism,while the shear crack is under shear mechanism.3)The drops of the stress-strain curves all correspond to the crack initiation or coalescence,which is also linked to a sudden increasing in the accumulated micro-crack curve.4)Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength,which indicates that the trend of peak strength can be explained by the meso-mechanics and energy. 展开更多
关键词 rock mechanics two pre-existing fissures strength parameters crack coalescence particle flow simulation
在线阅读 下载PDF
Rock burst proneness prediction by acoustic emission test during rock deformation 被引量:14
5
作者 张志镇 高峰 尚晓吉 《Journal of Central South University》 SCIE EI CAS 2014年第1期373-380,共8页
Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected w... Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected with the acoustic emission(AE) parameter in this work,which contributes to predicting the rock burst risk using AE technique.Primarily,a rock burst proneness index is proposed,and it just depends on the heterogeneous degree of rock material.Then,the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed.Finally,three kinds of rock samples,i.e.,granite,limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression,and the test data are fitted well with the theoretic formula. 展开更多
关键词 rock mechanics rock burst proneness PREDICTION accumulative acoustic emission counts Weibull statistical distribution
在线阅读 下载PDF
Experimental investigation on deformation characteristics and permeability evolution of rock under confining pressure unloading conditions 被引量:13
6
作者 CHEN Xu TANG Chun-an +2 位作者 YU Jin ZHOU Jian-feng CAI Yan-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1987-2001,共15页
Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to ex... Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain. 展开更多
关键词 unloading rock mechanics permeability evolution triaxial experiment acoustic emission SANDSTONE
在线阅读 下载PDF
Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code 被引量:10
7
作者 ZENG Wei YANG Sheng-qi +1 位作者 TIAN Wen-ling WEN Kai 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1367-1385,共19页
Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass... Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures. 展开更多
关键词 rock mechanics fluid-solid coupling particle flow code (PFC) PERMEABILITY triaxial compression
在线阅读 下载PDF
Creep properties and permeability evolution in triaxial rheological tests of hard rock in dam foundation 被引量:9
8
作者 XU Wei-ya WANG Ru-bin +3 位作者 WANG Wei ZHANG Zhi-liang ZHANG Jiu-chang WANG Wen-yuan 《Journal of Central South University》 SCIE EI CAS 2012年第1期252-261,共10页
Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress ... Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress coupling were studied, and variations of seepage rate with time in complete creep processes of rock were analyzed. It is shown that, when the applied stress is less than failure stress level, the creep deformation is not obvious, and its main form is steady-state creep. When applied stress level is greater than or less than but close to fracture stress, it is easier to see the increase of creep deformation and the more obvious accelerative creep characteristics. The circumferential creep deformation is obviously higher than the axial creep deformation. At the stage of steady-state creep, the average of seepage flow rate is about 4.7×10-9 rn/s at confining pressure (tr3) of 2 MPa, and is about 3.9×10-9 m/s at a3 of 6 MPa. It is seen that the seepage flow rate at or3 of 2 MPa in this case is obviously larger than that at tr3 of 6 MPa. At the stage of creep acceleration, the seepage flow rate is markedly increased with the increase of time. The variation of rock permeability is directly connected to the growth and evolution of creep crack. It is suggested that the permeability coefficient in complete creep processes of rock is not a constant, but is a function of rock creep strain, confining pressure, damage variable and pore water pressure. The results can be considered to provide a reliable reference for the establishment of rock rheological model and parameter identification. 展开更多
关键词 rock mechanics creep properties volcanic breccia triaxial rheology test permeability evolution creep damage
在线阅读 下载PDF
A new nonlinear empirical strength criterion for rocks under conventional triaxial compression 被引量:11
9
作者 XIE Shi-jie LIN Hang +1 位作者 CHEN Yi-fan WANG Yi-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1448-1458,共11页
The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under di... The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials. 展开更多
关键词 rock mechanics conventional triaxial compressive strength empirical strength criterion statistic evaluation
在线阅读 下载PDF
Numerical simulation of dynamic fracture properties of rocks under different static stress conditions 被引量:8
10
作者 LIANG Zheng-zhao QIAN Xi-kun +1 位作者 ZHANG Ya-fang LIAO Zhi-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期624-644,共21页
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio... When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case. 展开更多
关键词 rock mechanics coupled static and dynamic loading numerical simulation rate-dependent damage constitutive model
在线阅读 下载PDF
Fatigue properties analysis of cracked rock based on fracture evolution process 被引量:7
11
作者 张平 徐建光 李宁 《Journal of Central South University of Technology》 EI 2008年第1期95-99,共5页
Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens ma... Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens made of sandstone-like modeling material contained three pre-existing intermittent cracks with different geometrical distributions. The experimental results indicate that the fatigue deformation limit corresponding to the maximal cyclic load is equal to that of post-peak locus of static complete force?displacement curve; the fatigue deformation process can be divided into three stages: initial deformation, constant deformation rate and accelerative deformation; the time of fracture initiation, propagation and coalescence corresponds to the change of irreversible deformation. 展开更多
关键词 rock mechanics fatigue properties cyclic loading fracture evolution fatigue damage
在线阅读 下载PDF
Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology 被引量:4
12
作者 ZHANG Yan-bo YAO Xu-long +5 位作者 LIANG Peng WANG Ke-xue SUN Lin TIAN Bao-zhu LIU Xiang-xin WANG Shan-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2752-2769,共18页
By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis... By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture. 展开更多
关键词 rock mechanics acoustic emission(AE) wave velocity imaging technology tempo-spatial evolution characteristics localization effect of damage
在线阅读 下载PDF
Strength evolution law of cracked rock based on localized progressive damage model 被引量:4
13
作者 张平 李夕兵 李宁 《Journal of Central South University of Technology》 EI 2008年第4期493-497,共5页
In the light of the localized progressive damage model,the evolution law of cohesive and frictional strength with irreversible strains was determined.Then,the location and the extent of the excavation disturbed zone i... In the light of the localized progressive damage model,the evolution law of cohesive and frictional strength with irreversible strains was determined.Then,the location and the extent of the excavation disturbed zone in one deep rock engineering were predicted by using the strength evolution law.The theoretical result is close to the result of in-situ test.The strength evolution law excels the elastic-perfectly plastic model and elasto-brittle plastic model in which the cohesive and frictional strength are mobilized simultaneously.The results obtained indicate that the essential failure mechanism of the cracked rock can be described by the cohesion weakening and friction strengthening evolution law. 展开更多
关键词 rock mechanics STRENGTH failure mechanism LOCALIZATION evolution law
在线阅读 下载PDF
Influence of intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening 被引量:6
14
作者 张社荣 孙博 +1 位作者 王超 严磊 《Journal of Central South University》 SCIE EI CAS 2014年第4期1571-1582,共12页
Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru... Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa). 展开更多
关键词 rock mechanics intermediate principal stress hard rock with pre-existing circular opening failure mechanism discrete element
在线阅读 下载PDF
Effect of volume changes on complete deformation behavior of rocks
15
作者 赵衡 曹文贵 +1 位作者 李翔 张玲 《Journal of Central South University》 SCIE EI CAS 2010年第2期394-399,共6页
For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model... For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model.Firstly,rocks are divided into three parts,i.e.,voids,a damaged part and an undamaged part in the course of loading.The void ratio was applied to describing the changes of voids or pores during the deformation process.Then,using statistical damage theory,a constitutive model was developed for rocks to describe their strain softening and hardening on the basis of investigating the relationship between the net stress and apparent stress,in which the influence of volume changes on rock behavior was correctly taken into account,such as the initial phase of compaction and the latter stage of dilation.Thirdly,a method of determining model parameters was also presented.Finally,this model was used to compare the theoretical results with those observed from experiments under conventional triaxial loading conditions. 展开更多
关键词 rock mechanics constitutive model statistical damage theory volume change void ratio
在线阅读 下载PDF
Prediction of residual elastic energy index for rockburst proneness evaluation based on cluster forest model
16
作者 CAI Cheng-shuo GONG Feng-qiang +2 位作者 REN Li XU Lei HE Zhi-chao 《Journal of Central South University》 CSCD 2024年第11期4218-4231,共14页
The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which make... The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which makes it impossible to calculate the residual elastic energy index accurately.Based on 241 sets of experimental data and four input indexes of density,elastic modulus,peak intensity and peak input strain energy,this study proposed a machine learning model combining k-means clustering algorithm and random forest regression model:cluster forest(CF)model.The research employed a stratified sampling method on the dataset to ensure the representativeness and balance of the samples.Subsequently,grid search and five-fold cross-validation were utilized to optimize the model’s hyperparameters,aiming to enhance its generalization capability and prediction accuracy.Finally,the performance of the optimal model was evaluated using a test set and compared with five other commonly used models.The results indicate that the CF model outperformed the other models on the testing set,with a mean absolute error of 6.6%,and an accuracy of 93.9%.The results of sensitivity analyses reveal the degree of influence of each variable on rockburst proneness and the applicability of the CF model when the input parameters are missing.The robustness and generalization ability of the model were verified by introducing experimental data from other studies,and the results confirmed the reliability and applicability of the model.Therefore,the model not only effectively simplifies the acquisition of the residual elastic energy index,but also shows excellent performance and wide applicability. 展开更多
关键词 rock mechanics rockburst proneness random forest k-means clustering residual elastic energy index
在线阅读 下载PDF
Effects of thermal treatment on physical and mechanical characteristics of coal rock 被引量:16
17
作者 YIN Tu-bing WANG Pin +2 位作者 LI Xi-bing SHU Rong-hua YE Zhou-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2336-2345,共10页
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)... To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature. 展开更多
关键词 rock mechanical property split Hopkinson pressure bar (SHPB) high temperature coal rock dynamic mechanical property
在线阅读 下载PDF
Simulation of rock deformation and mechanical characteristics using clump parallel-bond models 被引量:10
18
作者 夏明 赵崇斌 《Journal of Central South University》 SCIE EI CAS 2014年第7期2885-2893,共9页
To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discus... To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics. 展开更多
关键词 particle simulation method clump parallel-bond model crack density loading procedure rock mechanical behavior
在线阅读 下载PDF
A new diamond bit for extra-hard, compact and nonabrasive rock formation 被引量:4
19
作者 王佳亮 张绍和 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1456-1462,共7页
A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can eas... A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix. 展开更多
关键词 SiC grits impregnated diamond bit non-smooth surface diamond rock fragmentation mechanism
在线阅读 下载PDF
A cohesion loss model for determining residual strength of deep bedded sandstone
20
作者 SONG Zhi-xiang ZHANG Jun-wen +12 位作者 ZHANG Yu-jie WU Shao-kang BAI Xu-yang ZHANG Li-chao ZHANG Sui-lin ZHANG Xu-wen FAN Guang-chen LI Wen-jun ZENG Ban-quan WANG Shi-ji SUN Xiao-yan SANG Pei-miao LI Ning 《Journal of Central South University》 2025年第7期2593-2618,共26页
Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep ch... Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers. 展开更多
关键词 residual strength deep bedded sandstone whole life-cycle evolution process cohesion loss model rock mechanics
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部