期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Numerical and experimental investigation on hydraulic-electric rock fragmentation of heterogeneous granite 被引量:1
1
作者 Xiaohua Zhu Ling He +3 位作者 Weiji Liu Yunxu Luo Youjian Zhang Wuji Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期15-29,共15页
Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering th... Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology. 展开更多
关键词 Hydraulic-electric rock fragmentation SHOCKWAVE Thermodynamics MICROCRACKS Weak Linear Parallel Bond Model
在线阅读 下载PDF
Experimental investigation on hard rock fragmentation of inserted tooth cutter using a newly designed indentation testing apparatus 被引量:4
2
作者 Jiuqun Zou Weihao Yang +2 位作者 Tao Zhang Xiaofei Wang Min Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期459-470,共12页
This investigation aims to explore the effects of stress conditions and rock cutting rates on hard rock fragmentation through indentation tests on a newly designed triaxial testing apparatus.This apparatus was designe... This investigation aims to explore the effects of stress conditions and rock cutting rates on hard rock fragmentation through indentation tests on a newly designed triaxial testing apparatus.This apparatus was designed to realize a triaxial loading and indentation test of cylindrical specimens using inserted tooth cutter.The boreability and crushing efficiency of granite rock was investigated by analyzing the change rules of the thrusting force,penetration depth,characteristics of chippings and failure patterns.Several quantitative indexes were used to evaluate rock boreability in this investigation.The granite rock samples all had a chiselled pit and a crushed rock core.Under initial stress conditions,only flat-shape chippings were stripped from the rock surface when the thrusting force reached 20 kN.The rock cutting special energy had a close correlation with the initial stress conditions and inserted tooth shape.Moreover,a thrusting force prediction model was proposed in this paper.The contribution of this study is that for the first time the influence mechanism of the initial triaxial stress conditions on rock fragmentation is investigated using an inserted tooth and the newly designed testing apparatus.This study has a crucial importance for practical underground hard rock crushing in geoengineering. 展开更多
关键词 Hard rock indentation test Hard rock fragmentation Triaxial confined conditions New triaxial testing apparatus Inserted tooth cutter Cylindrical rock specimens
在线阅读 下载PDF
Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model 被引量:1
3
作者 黄仕杰 刘毅 +5 位作者 赵勇 徐尤来 林福昌 李化 张钦 李柳霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期52-64,共13页
High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform wa... High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed. 展开更多
关键词 stress wave shock wave plasma channel impedance model rock fragmentation high-voltage pulse discharge
在线阅读 下载PDF
Increasing effect of metamorphism on rock properties
4
作者 Akinbinu Victor Abioye 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期205-211,共7页
This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of ma... This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties. 展开更多
关键词 Geology of rock rock property Brittleness Fragmentation and metamorphism
在线阅读 下载PDF
Applicability of existing criteria of rockburst tendency of sandstone in coal mines
5
作者 Tianqi Nan Linming Dou +3 位作者 Piotr Małkowski Wu Cai Haobing Li Shun Liu 《International Journal of Mining Science and Technology》 2025年第3期417-431,共15页
To evaluate the accuracy of rockburst tendency classification in coal-bearing sandstone strata,this study conducted uniaxial compression loading and unloading tests on sandstone samples with four distinct grain sizes.... To evaluate the accuracy of rockburst tendency classification in coal-bearing sandstone strata,this study conducted uniaxial compression loading and unloading tests on sandstone samples with four distinct grain sizes.The tests involved loading the samples to 60%,70%,and 80%of their uniaxial compressive strength,followed by unloading and reloading until failure.Key parameters such as the elastic energy index and linear elasticity criteria were derived from these tests.Additionally,rock fragments were collected to calculate their initial ejection kinetic energy,serving as a measure of rockburst tendency.The classification of rockburst tendency was conducted using grading methods based on burst energy index(WET),pre-peak stored elastic energy(PES)and experimental observations.Multi-class classification and regression analyses were applied to machine learning models using experimental data to predict rockburst tendency levels.A comparative analysis of models from two libraries revealed that the Random Forest model achieved the highest accuracy in classification,while the Ada Boost Regressor model excelled in regression predictions.This study highlights that on a laboratory scale,integrating ejection kinetic energy with the unloading ratio,failure load,W_(ET)and PES through machine learning offers a highly accurate and reliable approach for determining rockburst tendency levels. 展开更多
关键词 Burst energy index Pre-peak stored elastic energy Ejection energy of rock fragments Machine learning rockburst tendency classification
在线阅读 下载PDF
Kinetic energy and its applications in mining engineering 被引量:7
6
作者 Zhang Zongxian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期237-244,共8页
Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By... Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation. 展开更多
关键词 Kinetic energy rock fragmentation Open pit blasting Sublevel caving mining Energy efficiency
在线阅读 下载PDF
Micro-macro fracture mechanism of heterogeneous granite in percussive drilling 被引量:1
7
作者 Wei-Ji Liu Yan-Fei Wang +1 位作者 Zhao-Wang Dan Xiao-Hua Zhu 《Petroleum Science》 SCIE EI CSCD 2023年第5期3131-3142,共12页
The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking e... The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking efficiency and ROP.However,the rock-breaking mechanism of percussive drilling is still unclear enough,especially the micro-fracture mechanism of rock under confining pressure(under lateral pressure and hydraulic pressure).In this paper,the impact rock breaking experiments by four kinds of Polycrystalline Diamond Compact(PDC)cutters are carried out using a drop-weight impact testing machine and an acoustic emission(AE)recording system,the influence of parameters such as cutter shape,rake angle,and impact energy on rock-breaking are systematically analyzed.This study includes a numerical simulation to examine the process of crack initiation,propagation,and cuttings formation during the impact process with the consideration of confining pressure.The results show the conicalshaped cutter is the most aggressive with high breaking efficiency.The penetration depth of the cutter is mainly influenced by the impact energy and cutter shape than the rake angle of the cutter.There exists critical impact energy makes the rock breaking efficiency the highest.The critical impact energy is about 40 J when using the conical-shaped cutter with a rake angle of 15°.The rock mainly failed in tensile mode,and the inter-grain crack is the main crack.Hydraulic pressure can inhibit the formation of horizontal cracks,while lateral pressure can inhibit the formation of vertical cracks and reduce the proportion of tensile cracks.The research results can provide some reference and basis for improving the rock-breaking efficiency in deep hard formations. 展开更多
关键词 Percussive drilling PFC rock fragmentation characteristics rock breaking efficiency
在线阅读 下载PDF
Methodology for the estimation of expansive cement borehole pressure 被引量:1
8
作者 Kelly-Meriam Habib Isaac Vennes Hani S.Mitri 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期73-81,共9页
This work is part of a multi-phase project which aims to develop a sound methodology for rock fragmen-tation in underground mines using expansive cement.More specifically,it is the first phase of the project which foc... This work is part of a multi-phase project which aims to develop a sound methodology for rock fragmen-tation in underground mines using expansive cement.More specifically,it is the first phase of the project which focuses on laboratory tests to investigate the mechanical performance of expansive cement,also known as soundless chemical demolition agents(SCDA).This paper reports the results of laboratory tests conducted on instrumented thick-walled cylinders filled with expansive cement.Expansive pressure evo-lution and temperature variation with time are first examined for different borehole diameters.The clas-sical analytical method for expansive pressure estimation is validated with direct pressure measurement using high-capacity pressure sensor,and an empirical model is obtained.A new methodology based on iterative procedure is developed using axisymmetric finite element modelling and test results to derive the modulus of elasticity of the expansive cement at peak pressure.The results of this study show that the expansive pressure increases with borehole diameter when the rigidity of the steel cylinder is constant reaching 83 MPa for a 38.1 mm borehole.It is also shown that the expansive pressure decreases signif-icantly with increased cylinder rigidity for the same borehole diameter.The newly developed methodol-ogy revealed that the modulus of elasticity of expansive cement at peak pressure is estimated at 8.2 GPa.A discussion on the extension of the findings of this work to hard rock mining applications is presented. 展开更多
关键词 rock fragmentation Soundless chemicaldemolitionagents Expansive cement
在线阅读 下载PDF
Numerical assessment of spacing–burden ratio to effective utilization of explosive energy 被引量:3
9
作者 Sazid Mohd Singh T.N. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期291-297,共7页
The spacing–burden(S/B) ratio plays significant role on rock fragmentation and proper utilization of explosive energy to minimize the undesirable damage.Low S/B ratio generates fine fragments due to pressure rings co... The spacing–burden(S/B) ratio plays significant role on rock fragmentation and proper utilization of explosive energy to minimize the undesirable damage.Low S/B ratio generates fine fragments due to pressure rings coalescence of two blast holes,whereas boulder generations were observed above optimum S/B ratio.Both conditions are not acceptable because of wastage of explosive energy.Therefore,to resolve this issue,a numerical model study was conducted to optimize the S/B ratio and to envisage its effect on rock fragmentation based on utilization of explosive energy.Finite element simulation tool was used to see the extent of two blast hole influence area variation with varying S/B ratio.The better results were obtained at S/B ratio of 1:2 with optimum utilization of peak explosive energy.The performance was observed based on peak kinetic energy,peak pressure,radial and hoop stresses on centre of the two blast holes,where pressure rings coalescence. 展开更多
关键词 rock blasting Spacing-burden ratio (S/B)rock fragmentation Numerical modelling Pressure rings
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部