The robustness analysis problem of a class of nonlinear descriptor systems is studied. Nonlinear matrix inequality which has the good computation property of convex feasibility is employed to derive some sufficient co...The robustness analysis problem of a class of nonlinear descriptor systems is studied. Nonlinear matrix inequality which has the good computation property of convex feasibility is employed to derive some sufficient conditions to guarantee that the nonlinear descriptor systems have robust disturbance attenuation performance, which (avoids) the computational difficulties in conversing nonlinear matrix and Hamilton-Jacobi inequality. The computation property of convex feasibility of nonlinear matrix inequality makes it possible to apply the results of nonlinear robust control to practice.展开更多
This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and...This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
基金ProjectsupportedbytheTeachingandResearchAwardProgramforOutstandingYoungTeachersinHigherEducationInstitutionsofMOE China
文摘The robustness analysis problem of a class of nonlinear descriptor systems is studied. Nonlinear matrix inequality which has the good computation property of convex feasibility is employed to derive some sufficient conditions to guarantee that the nonlinear descriptor systems have robust disturbance attenuation performance, which (avoids) the computational difficulties in conversing nonlinear matrix and Hamilton-Jacobi inequality. The computation property of convex feasibility of nonlinear matrix inequality makes it possible to apply the results of nonlinear robust control to practice.
基金supported by the National Natural Science Foundation of China(62271255,61871218,61801211)the Fundamental Research Funds for the Central Universities(3082019NC2019002,NG2020001,NP2014504)+2 种基金the Open Research Fund of State Key Laboratory of Space-Ground Integrated Information Technology(2018_SGIIT_KFJJ_AI_03)the Funding of Postgraduate Research Practice&Innovation Program of Jiangsu Province(KYCX200201)the Open Research Fund of the Key Laboratory of Radar Imaging and Microwave Photonics(Nanjing University of Aeronautics and Astronautics),Ministry of E ducation(NJ20210001)。
文摘This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.