Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably aff...Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
在全球城市化和环境压力加剧的背景下,对城市街道绿化泛类结构(urban street greening general structure,USGGS)的量化是加强城市区域碳汇、缓解城市热岛效应以应对全球气候变化的重要前提。通过量化与分析不同城市的USGGS,探究其与城...在全球城市化和环境压力加剧的背景下,对城市街道绿化泛类结构(urban street greening general structure,USGGS)的量化是加强城市区域碳汇、缓解城市热岛效应以应对全球气候变化的重要前提。通过量化与分析不同城市的USGGS,探究其与城市建成环境之间的关系。使用改进的DeepLabV3+神经网络模型,对天津、杭州、深圳的城市全景街景图像进行语义分割,并结合细粒度数据量化USGGS,使用Robust回归模型分析USGGS与城市功能属性POI的关系。研究显示,天津的USGGS主要由单乔木和乔-灌结构组成,与商业属性和生活属性的POI紧密相关;而杭州和深圳则展现出包括草本植物在内的多样化USGGS与休闲文化设施的POI更强的关联性。通过对3个城市USGGS的量化、分析与比较,为城市绿色基础设施规划和管理奠定了一定的数据基础,同时基于城市街景图像对USGGS的分析也为城市碳汇计算与城市热环境研究提供了新的视角。展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target ...To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.展开更多
三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在...三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在线学习,提高注册精度;最后,利用前一帧的注册矩阵快速恢复已丢失的关键点,以提高注册的速度.实验结果表明,该方法能够较为流畅地对视频帧进行跟踪,并能保持较好的注册精度.展开更多
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Projects(52105175,52305149)supported by the National Natural Science Foundation of ChinaProject(2242024RCB0035)supported by the Zhishan Young Scholar Program of Southeast University,China+5 种基金Project(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2023MK042)supported by the State Administration for Market Regulation,ChinaProject(KJ2023003)supported by the Jiangsu Administration for Market Regulation,ChinaProjects(KJ(Y)202429,KJ(YJ)2023001)supported by the Jiangsu Province Special Equipment Safety Supervision Inspection Institute,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,ChinaProject(1102002310)supported by the Technology Innovation Project for Returnees in Nanjing,China。
文摘Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
文摘在全球城市化和环境压力加剧的背景下,对城市街道绿化泛类结构(urban street greening general structure,USGGS)的量化是加强城市区域碳汇、缓解城市热岛效应以应对全球气候变化的重要前提。通过量化与分析不同城市的USGGS,探究其与城市建成环境之间的关系。使用改进的DeepLabV3+神经网络模型,对天津、杭州、深圳的城市全景街景图像进行语义分割,并结合细粒度数据量化USGGS,使用Robust回归模型分析USGGS与城市功能属性POI的关系。研究显示,天津的USGGS主要由单乔木和乔-灌结构组成,与商业属性和生活属性的POI紧密相关;而杭州和深圳则展现出包括草本植物在内的多样化USGGS与休闲文化设施的POI更强的关联性。通过对3个城市USGGS的量化、分析与比较,为城市绿色基础设施规划和管理奠定了一定的数据基础,同时基于城市街景图像对USGGS的分析也为城市碳汇计算与城市热环境研究提供了新的视角。
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
基金supported by the National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22).
文摘To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.
文摘三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在线学习,提高注册精度;最后,利用前一帧的注册矩阵快速恢复已丢失的关键点,以提高注册的速度.实验结果表明,该方法能够较为流畅地对视频帧进行跟踪,并能保持较好的注册精度.